Nelder-Mead 法の数学的基礎

有澤 健治†

Abstract

Mathematical foundation of Nelder-Mead simplex method is investigated under the objective function of continuous strictly quasiconvex function with bounded level set. It is shown that the diameters of simplex series converge to 0 if the number of consecutive reflections is always finite.

1 はじめに

Nelder-Mead 法とは、n次元ユークリッド空間の実数値関数f(x)を与え、その下でf(x)の最小値を微分に頼らずに求める方法の一つである。Lagarias[18] によれば、Nelder-Mead 法は広く使われているにも関らず数学的に基礎づけられていない。言い換えれば Nelder-Mead 法が成立する関数f(x)の特徴がよく分かっていないのである。

Lagarias は f(x) を「有界なレベル集合を持つ厳密な凸関数」の仮定の下で 議論し、いくつかの重要な結果を残している。しかしながら Nelder-Mead 法の 分析は極めて煩雑であり、 $n \ge 2$ での最小値への収束の証明にすらも至ってい ない。Gao[21] は厳密な凸関数の条件を強めた一様な凸関数 (uniformly convex) の概念の下に議論を展開し、任意のnの下に収束性の証明を試みている。

ここでは彼らのアプローチとは逆に、「厳密な凸関数」の条件を弱めて、n = 1の場合には「厳密な準凸関数」の下に、n > 1の場合には「有界なレベル集合と 連続性」を条件に加えて議論を展開する。「有界なレベル集合を持つ連続で厳 密な準凸関数」は Lagarias や Gao から一歩進めるには手頃な条件である。こ の下で彼らの得た結論を(緩和された条件の下で)全て導くことが、この論文の

[†]Kenji Arisawa, Aichi University, Nagoya, Japan, arisawa@aichi-u.ac.jp

目標である。証明は多くの場合分けを含み、煩雑であるが、それでも Lagarias の証明に比べると、かなり簡単になっている。この論文 (記事) を読むには根気 が必要である¹。

2 凸解析の基礎

最初に、凸集合と凸関数および一般化された凸関数の定義と性質を Nelder-Mead 法の理解に必要な限りにおいて解説する。凸集合と凸関数に関しては Rockafellar[6] が詳しい。和書としては布川 [11] にも (詳しくはないが) 載って いる。一般化された凸関数に関しては Cambini[15] が良く纏まっている²。

2.1 記号の意味

- **R** 実数の集合
- **R**ⁿ n 次元ユークリッド空間
- := 定義を表す

区間 「区間」概念を \mathbb{R}^n の任意の 2 点 x_1, x_2 に拡張して

 $(\boldsymbol{x}_1, \boldsymbol{x}_2) := \{ (1 - \lambda) \boldsymbol{x}_1 + \lambda \boldsymbol{x}_2 ; 0 < \lambda < 1 \}$

とする。 $\lambda = 0$ を許す場合 $[x_1, x_2)$ とする。同様に $\lambda = 1$ を許す場合 (x_1, x_2) とする。共に許すなら $[x_1, x_2]$ である。

2.2 アフィン集合

R上の n 次線形空間 **R**ⁿ の部分集合 A が

 $\boldsymbol{x}_1, \boldsymbol{x}_2 \in A \implies \{(1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2 ; \lambda \in \boldsymbol{R}\} \subset A$

¹解説記事のつもりで書いた文章だが、新しい視点による新しい内容を含む。基礎から書かれて いるために、論文としては分量が多すぎる嫌いがある。なお多数の新しい証明を含む。証明に誤 りが見つかった場合には http://ar.nyx.link/min/ にて訂正する予定である。修正、追加につ いても同様である

²一般化された凸関数の一つである「厳密な準凸関数」は、この論文の土台である。しかるに、 厳密な準凸関数の歴史はまだ浅く、解説書を見つけるのが難しい。Cambiniに尽きるのではないか と思える。なお Lagarias が厳密な準凸関数を議論の基礎に置かなかったのは無理からぬことであ る。彼が論文を書いた頃には「厳密な準凸関数」の概念は確立していなかったはずであるから

満たすとき、A は**アフィン集合**であると言われる。つまりアフィン集合 A と は、その中の任意の 2 点を結ぶ直線が A に含まれるような集合である。

特に、空集合、ただ1点から成る集合、**R**ⁿ もアフィン集合である。アフィン集合の共通部分もアフィン集合となる。

アフィン集合の次元: $x_0 \in A$ とすれば、集合 $V := \{x - x_0 ; x \in A\}$ は \mathbb{R}^n の線形部分空間となる。Aの次元 dim A を dim V で定義する。

アフィン変換:アフィン集合 *A* からアフィン集合 *A*' への写像 $\phi(x)$ が、任 意の $x_1, x_2 \in A, \lambda \in \mathbf{R}$ について

 $\phi((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) = (1-\lambda)f(\boldsymbol{x}_1) + \lambda f(\boldsymbol{x}_2)$

を満たすとき $\phi(\mathbf{x})$ はアフィン変換と言われる。 $A \subset \mathbf{R}^n, A' \subset \mathbf{R}^m$ とし、M を $\mathbf{R} \perp o m \times n$ 行列、 $\mathbf{c} \in \mathbf{R}^m$ のベクトルとすると $M\mathbf{x} + \mathbf{c}$ はアフィン変換 である。

 $x'_i = \phi(x_i) \ (i = 1, 2, ...)$ とすると

 $oldsymbol{x}_3 = (1-\lambda)oldsymbol{x}_1 + \lambdaoldsymbol{x}_2 \implies oldsymbol{x}_3' = (1-\lambda)oldsymbol{x}_1' + \lambdaoldsymbol{x}_2'$

である。従ってアフィン変換によって

- 直線は直線に変換される
- 直線上の3点の分割比は保存される

 R^n の部分集合Sに対して、集合 affSを

aff
$$S := \{\sum_{i=1}^k \lambda_i \boldsymbol{x}_i ; \, \boldsymbol{x}_i \in S, \, \lambda_i \in \boldsymbol{R}, \, \sum_{i=1}^k \lambda_i = 1\}$$

で定義する³。ここに $\sum_{i=1}^{k}$ はあらゆる有限部分和である (k を固定しない)。 特に S が m 個の点の集合であれば、k = m とできる。aff S はアフィン集合 となる。

Rⁿ の部分集合 S に対して dim S を dim aff S で定義する ^[11] 。S が n+1 個 の点の集合 { $x_1, x_2, ..., x_{n+1}$ } の場合には dim S は $x_1 - x_{n+1}$ (i = 1, 2, ..., n) が張る線形空間の次元に他ならない。 dim S = n であれば S は「アフィン独 立」であると言われる ^[6] 。

³「アフィン包 (affine hull)」と言う^[11]

問題 1. $S = \{x_1, x_2, ..., x_{n+1}\}$ として $x_{n+1} \in \operatorname{aff} \{x_1, x_2, ..., x_n\}$

であれば $\dim S < n$ であることを示せ。

答:

$$\boldsymbol{x}_{n+1} = \sum_{i=1}^{n} \lambda_i \boldsymbol{x}_i, \quad \sum_{i=1}^{n} \lambda_i = 1 \quad \therefore \quad \sum_{i=1}^{n} \lambda_i (\boldsymbol{x}_i - \boldsymbol{x}_{n+1}) = 0$$

ここに λ_i は全てが0ではない。従って $x_i - x_{n+1}$ (i = 1, 2, ..., n) は一次従属 であり dim S < n である。

2.3 凸集合

R上の n 次線形空間 **R**ⁿ の部分集合 S が

 $x_1, x_2 \in S \implies \{(1 - \lambda)x_1 + \lambda x_2; 0 \le \lambda \le 1\} \subset S$ 満たすとき、S は**凸集合**であると言われる。つまり凸集合 S とは、その中の任意の 2 点を結ぶ線分が S に含まれるような集合である。

 \mathbf{R}^n の有限部分集合 $M = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m\}$ に対して、Mの凸包 convMを conv $M := \{\sum_{i=1}^m \lambda_i \mathbf{x}_i ; \lambda_i \ge 0 \ (i = 1, 2, ...), \sum_{i=1}^m \lambda_i = 1\}$

で定義する4。

2.4 凸関数および一般化された凸関数

凸関数/厳密な凸関数/準凸関数/厳密な準凸関数の定義を示す。 $D \subset \mathbf{R}^n$ として **凸関数**: $f(\mathbf{x})$ が D上の凸関数であるとは、D が凸集合で

 $x_1, x_2 \in D, \ \lambda \in (0, 1)$

 $\implies f((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) \le (1-\lambda)f(\boldsymbol{x}_1) + \lambda f(\boldsymbol{x}_2)$

厳密な凸関数: f(x) が D 上の厳密な凸関数であるとは、D が凸集合で

 $x_1, x_2 \in D, \ \lambda \in (0, 1), \ x_1 \neq x_2$

 $^{{}^{4}\}mathbf{R}^{n}$ の任意の部分集合 S に対して conv S を、S を含む最小の凸集合として定義する

 $\implies f((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) < (1-\lambda)f(\boldsymbol{x}_1) + \lambda f(\boldsymbol{x}_2)$

準凸関数: *f*(*x*) が *D* 上の準凸関数であるとは、*D* が凸集合で

 $x_1, x_2 \in D, x \in (x_1, x_2) \implies f(x) \le \max\{f(x_1), f(x_2)\}$ 厳密な準凸関数: f(x) が D 上の厳密な準凸関数であるとは、D が凸集合で

 $\boldsymbol{x}_1, \boldsymbol{x}_2 \in D, \ \boldsymbol{x} \in (\boldsymbol{x}_1, \boldsymbol{x}_2) \implies f(\boldsymbol{x}) < \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}_2)\}$

補注 1: 凸関数の定義において (0,1) は [0,1), (0,1], [0,1] のどれに置き換え てもよい。厳密な凸関数の定義においては、このような置き換えは不可能であ る。なぜなら、置き換えると、そのような関数 f(x) は存在できない。準凸関 数、厳密な準凸関数の定義に現れる (x_1, x_2) についても同様なことが言える。 補注 2: 厳密な凸関数の定義において、明らかに $x_1 \neq x_2$ の条件が必要であ る。Cambini[15] ではこの条件が抜け落ちている。Rockafeller[6] はこの条件を 含めている。厳密な準凸関数の定義においては $x_1 \neq x_2$ の条件を含めても追 加条件にはならない。なぜなら $x_1 = x_2$ の下では $x \in (x_1, x_2)$ は偽の条件と なるから。もっとも $x = (1 - \lambda)x_1 + \lambda x_2$ ($\lambda \in (0, 1)$) として表現した場合に は意味のある追加条件になり、Cambini はこの下で $x_1 \neq x_2$ として条件付けて いる。

注意: 厳密な準凸関数 (strictly quasiconvex function) の定義は文献によって異 なるので注意が必要である。"strictly quasiconvex function" は Karamardian[8] によって提起された。しかし彼の定義は問題を孕んでいた。その辺の事情は Greenberg[9] に詳しい。ここでは Cambini[15] の定義を採用する。この定義と 同じ立場の文献としては、文献 [13, 10, 12, 15] がある。なお日本語訳は文献 [12] を採用した。

凸関数/厳密な凸関数/準凸関数/厳密な準凸関数の関係を纏めると、図1のようになる⁵。

定理 1. アフィン変換で準凸関数は準凸関数になる。すなわち

 $f: \mathbf{R}^n \to \mathbf{R}, \quad \mathbf{x} \in \mathbf{R}^m, \quad \mathbf{c} \in \mathbf{R}^n$

⁵この図は Cambini^[15] にある。証明は容易なので省略する

図 1: いろいろな種類の凸関数の関係

として、その下で $g: \mathbf{R}^m \to \mathbf{R}$ を、 \mathbf{R} 上の $n \times m$ 行列 M によって $g(\mathbf{x}) = f(M\mathbf{x} + \mathbf{c})$

で定義する。すると f が準凸関数であれば g も準凸関数である ^[15] 。 証明: $q(\mathbf{x})$ の定義と $f(\mathbf{x})$ が準凸関数であることから

$$g((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) = f(M((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) + \boldsymbol{c})$$

= $f((1-\lambda)(M\boldsymbol{x}_1 + \boldsymbol{c}) + \lambda(M\boldsymbol{x}_2 + \boldsymbol{c}))$
 $\leq \max\{f(M\boldsymbol{x}_1 + \boldsymbol{c}), f(M\boldsymbol{x}_2 + \boldsymbol{c})\} = \max\{g(\boldsymbol{x}_1), g(\boldsymbol{x}_2)\}$

となり、gは準凸関数であることが解る。

補注:凸関数、厳密な凸関数、厳密な準凸関数についても同様である。

定理 2. Jensen の不等式

 $f(\boldsymbol{x})$ が凸関数であれば

$$\lambda_i \ge 0 \ (i = 1, 2, ..., m), \quad \sum_{i=1}^m \lambda_i = 1$$
 (1)

とすると

$$f(\sum_{i} \lambda_{i} \boldsymbol{x}_{i}) \leq \sum_{i} \lambda_{i} f(\boldsymbol{x}_{i})$$
 (2)

 \square

となる6。

補注: *f*(*x*) が厳密な凸関数であれば式 (1) の ≥ と式 (2) の ≤ を厳密な不等式 に置き換える。ただし

$$\exists (i,j) : \boldsymbol{x}_i \neq \boldsymbol{x}_j$$
 (3)

⁶数学的帰納法で証明すればよい。証明は容易なので省略する。凸関数についてのよく知られた 不等式で、大抵の本に載っている

とする⁷。この条件は次のように考えれば理解しやすい: $x_1, x_2, ...$ の中に等しいものがあった場合、例えば $x_1 \neq x_2 = x_3$ であれば、

 $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = \lambda'_1 x_1 + \lambda'_2 x_2 \quad (\lambda'_1 := \lambda_1, \lambda'_2 := \lambda_2 + \lambda_3)$ と置き換えればよい。このように置き換えると、結局 $x_1, x_2, ..., x_k$ の全てが 相異なる問題に帰着する。凸関数と準凸関数の場合には k = 1 まで許される。 しかし厳密な凸関数と厳密な準凸関数の場合には k = 2 までしか許されない。

定理 3. f(x) が準凸関数であれば、

$$\lambda_i \ge 0 \ (i = 1, 2, ..., m), \quad \sum_{i=1}^m \lambda_i = 1$$
 (4)

とすると

$$f(\sum_{i} \lambda_i \boldsymbol{x}_i) \le \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}_2), ..., f(\boldsymbol{x}_m)\}$$
(5)

となる⁸。

補注: f(x)が厳密な準凸関数であれば式 (4) の \geq と式 (5) の \leq を厳密な不等 式に置き換える。さらに式 (3) と同じ条件が必要になる。

定理 4. 凸関数は連続関数である⁹

準凸関数も厳密な準凸関数も連続関数である保証はない。準凸関数の例を図 2 に示す。

定理 5. 厳密な準凸関数では

- (a) 極小点は最小点である
- (b) 最小点は高々1個しか存在しない

証明: f(x)を厳密な準凸関数とする。

(a) の証明: dom f が 0 個あるいは 1 個の点しか含まない場合には定理の主張 は正しい。極小点 \dot{x} が存在し、仮にそれが最小点ではないとすると、

 $\exists \boldsymbol{x}': \ f(\boldsymbol{x}') < f(\check{\boldsymbol{x}}) \quad \therefore \ \forall \boldsymbol{x} \in (\boldsymbol{x}',\check{\boldsymbol{x}}): f(\boldsymbol{x}) < \max\{f(\boldsymbol{x}'), f(\check{\boldsymbol{x}})\} = f(\check{\boldsymbol{x}})$

⁷Cambini[15] は条件 (3) が抜け落ちている

⁸数学的帰納法で証明すればよい。証明は容易なので省略する。証明は Cambini[15] にある

⁹凸関数に関してよく知られた定理である。証明は長くなるので省略する。他書を参考にされた い。例えば1変数関数では高木[1]、多変数関数では布川[11]、Rockafellar[6]に載っている

図 2: 準凸関数の例 中央と右は厳密な準凸関数でもある

となる。ゆえに \dot{x} のどのような近傍にも $f(x) < f(\dot{x})$ となる点xが存在する。 つまり \dot{x} が極小点であるとする仮定に反す。

(b) の証明:仮に最小点が2個存在したとせよ。それを x_1, x_2 とすると

 $\exists \boldsymbol{x}: \ \boldsymbol{x} \in (\boldsymbol{x}_1, \boldsymbol{x}_2) \quad \therefore \ f(\boldsymbol{x}) < \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}_2)\}$

となり、 $m{x}_1, m{x}_2$ が最小点であるとする仮定に反す。

補注: (b) で「高々」としたのは厳密な準凸関数では最小点の存在は保証され ないからである。例えば $f(x) = e^{-x}$ や

$$f(x) = \begin{cases} x^2 & (x > 0) \\ x^2 + 1 & (x \le 0) \end{cases}$$

などである。

この記事では最小点を持つ連続で厳密な準凸関数が考察の主要な対象となっている。この関数のイメージをはっきりさせるために、1 変数の例を図3にしめす。

1 変数の最小値を持つ連続で厳密な準凸関数は、最小点の左では厳密な減少 関数、右では厳密な増加関数である。厳密な凸関数に比べると、関数の条件が かなり緩い。

或る関数、例えば2変数の $f(x,y) = \sqrt{x} + y^2$ が準凸関数か否かを判断するのは意外と難しい。そこで関数の幾何学的な特徴を明らかにして判断に役立てる。

図 3: 最小点を持つ連続で厳密な準凸関数の例

定義 1. Epigraph: epifを

 $epi f = \{ (\boldsymbol{x}, \mu) ; \boldsymbol{x} \in dom f, \ \mu \in \boldsymbol{R}, \ f(\boldsymbol{x}) \le \mu \}$

として定義する^[6, 11, 14, 15]。epifをエピグラフと言う (図 4)。境界上の点は epif に含まれる。

図 4: Epigraph

影の部分が関数 f の epigraph その境界の実線が f の graph である epi とは「上」のこと

定理 6. *f*(*x*) が凸関数であるための必要十分条件は、epi *f* が凸集合となることである^[15]。

証明: 必要条件であること:

 $\begin{aligned} \boldsymbol{x}_1, \boldsymbol{x}_2 \in \operatorname{dom} f, \quad \lambda \in [0, 1] \\ f((1 - \lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) &\leq (1 - \lambda)f(\boldsymbol{x}_1) + \lambda f(\boldsymbol{x}_2) \end{aligned}$

 $J((1 \quad \lambda)u_1 + \lambda u_2) \leq (1 \quad \lambda)J(u_1) + \lambda J(u_2)$

とする。この下で epi f が凸集合であることを示せばよい。 $(x_1, \mu_1), (x_2, \mu_2) \in$

epifとすると、 $f(\boldsymbol{x}_1) \le \mu_1, \ f(\boldsymbol{x}_2) \le \mu_2$ である。従ってこれから $(1-\lambda)f(\boldsymbol{x}_1) + \lambda f(\boldsymbol{x}_2) \le (1-\lambda)\mu_1 + \lambda\mu_2$

を得る。これは

 $((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2, (1-\lambda)\mu_1 + \lambda \mu_2) \in \operatorname{epi} f$

すなわち epifが凸集合であることを意味する。

十分条件であること: epifが凸集合とすると、 $\nu_1 = f(\boldsymbol{x}_1), \nu_2 = f(\boldsymbol{x}_2)$ と置いて

 $(1-\lambda)(\boldsymbol{x}_1,\nu_1) + \lambda(\boldsymbol{x}_2,\nu_2) = ((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2,(1-\lambda)\nu_1 + \lambda\nu_2) \in \operatorname{dom} f$ であるが、epi f の定義によって

 $f((1-\lambda)\mathbf{x}_1 + \lambda \mathbf{x}_2) \le (1-\lambda)\nu_1 + \lambda \nu_2 = (1-\lambda)f(\mathbf{x}_1) + \lambda f(\mathbf{x}_2)$ である。これから定理が従う。

補注 1: 厳密な凸関数では、epi f が凸集合である他に、f が線分を含まない。
 補注 2: 文献によっては epi f が凸集合であることを基に凸関数を定義している ^[6, 14]。ここでは Cambini ^[15] に従った。

定義 2. レベル集合: R^n の実数値関数を f(x) とすると、 R^n の部分集合 $L(f, \mu) = \{x \in \text{dom } f ; f(x) \le \mu\}$

を $L(f,\mu)$ をレベル集合と言う¹⁰。

図5に定義の意味を示す。この図のように1変数のグラフの場合には、x軸に 平行な線と epi f との共通部分が、 $L(f,\mu)$ である。図には $L(f,\mu_1)$ と $L(f,\mu_2)$ が太線で示されている。 $L(f,\mu_1)$ は、領域が分かれるので、凸集合ではない。 $L(f,\mu_2)$ は凸集合である。

最小点を持つ厳密な凸関数ではレベル集合は有界になるが¹¹、最小点を持つ 連続で厳密な準凸関数では必ずしもそうではない。図**3**に示した左の図ではレ ベル集合 $L(f,\mu)$ はどの μ でも有界であるが、右の図では有界にはならない。

定理 7. f(x) が準凸関数であるための必要十分条件は、f(x) の全てのレベル 集合が凸集合となることである ^[15, 14] 。

¹⁰Rockafeller[6] に従った。Boyd[14] は "sublevel set"、Cambini[15] は "lower level set" と言う

¹¹自明だと思えるが文献が見つからない。このことは以下では使われないので深入りしない

図 5: *L*(*f*, *µ*) この図は準凸関数にはならない例を示している

証明: 必要条件であること: $x_1, x_2 \in L(f, \mu), \lambda \in [0, 1]$ とすると、f は準凸関 数であるから

 $f((1-\lambda)\boldsymbol{x}_1 + \lambda \boldsymbol{x}_2) \le \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}_2)\} \le \mu$

である。従って $(1-\lambda)\mathbf{x}_1 + \lambda \mathbf{x}_2 \in L(f,\mu)$ となる。これは $L(f,\mu)$ が凸集合で あることを意味する。

+分条件であること: $\mu = \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}_2)\}$ とせよ。すると $f(\boldsymbol{x}_2) \leq \mu$, $f(\boldsymbol{x}_1) \leq \mu$ である。 $L(f,\mu)$ は凸集合であるから $\boldsymbol{x} \in [\boldsymbol{x}_1, \boldsymbol{x}_2]$ とすると $f(\boldsymbol{x}) \leq \mu$ である。従って

$$f(\boldsymbol{x}) \le \mu = \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}_2)\}$$

すなわち f(x) は準凸関数である。

補題 1. 準凸関数 f(x) において

 $x^* \in (x_1, x_2)$ and $f(x_1) \le f(x^*)$ and $f(x^*) \ge f(x_2)$ (6) を満たす x^* が存在すれば、 f(x) は区間 $[x_1, x^*]$ または区間 $[x^*, x_2]$ で定数 である。

証明: 準凸性の条件

$$f(x) \le \max\{f(x_1), f(x^*)\}$$
 for $x \in [x_1, x^*]$ (7)

$$f(\boldsymbol{x}) \leq \max\{f(\boldsymbol{x}^*), f(\boldsymbol{x}_2)\}$$
 for $\boldsymbol{x} \in [\boldsymbol{x}^*, \boldsymbol{x}_2]$ (8)

から、仮にどちらの区間も定数ではないなら

$$f(x'_1) < \max\{f(x_1), f(x^*)\}$$
 for $x'_1 \in [x_1, x^*]$ (9)

$$f(x_2') < \max\{f(x^*), f(x_2)\}$$
 for $x_2' \in [x^*, x_2]$ (10)

となる x'_1 と x'_2 が存在する。従って

 $f(\boldsymbol{x}^*) \le \max\{f(\boldsymbol{x}_1'), f(\boldsymbol{x}_2')\} < \max\{f(\boldsymbol{x}_1), f(\boldsymbol{x}^*), f(\boldsymbol{x}_2)\} \le f(\boldsymbol{x}^*)$ (11) すなわち $f(\boldsymbol{x}^*) < f(\boldsymbol{x}^*) \ge$ なり矛盾する。

定理 8. 準凸関数 f(x) が、厳密な準凸関数であるための必要十分条件は、定数 となる区間を含まないことである ¹²。

証明: 必要条件: $x \in (x_1, x_2)$ とすると $f(x) < \max\{f(x_1), f(x_2)\}$ であり、区 間 $[x_1, x_2]$ で f(x) は定数ではない。

十分条件として裏命題を証明する:準凸関数 f(x) が厳密な準凸ではないと せよ。すなわち

 $\exists x^* \in (x_1, x_2): f(x^*) = \max\{f(x_1), f(x_2)\}$

すると補題 1 によって f(x) は $[x_1, x_2]$ の中に定数となる区間を含む。 \Box

例 1. 関数

$$f(x,y) = \frac{x^2}{x^2 + 1} + y^2 \tag{12}$$

は (x,y) = (0,0) に最小点を持つ。f(x,y) は準凸関数ではない。また L(f,1) は有界ではない。L(f,1) の境界

$$\frac{x^2}{x^2+1} + y^2 = 1$$

のグラフを図 6 に示す。x > 0, y > 0 の領域を調べる。x が或る点 (変曲点) より大きい領域では下に凸であり、L(f,1) は凸集合にはならないことが解る。

$$y = \frac{1}{z}, \quad z = \sqrt{1+x^2}, \quad z' = \frac{x}{z}, \quad y' = -\frac{x}{z^3}, \quad y'' = -\frac{1}{z^3} + \frac{3xz'}{z^4}$$
これから変曲点 $x = 1/\sqrt{2}$ を得る。従って $L(f,1)$ は凸領域ではない。

3 Nelder-Mead 法の基礎

 \mathbf{R} を実数の集合、 \mathbf{R}^n をn次元ユークリッド空間とする。実数値関数 $f: \mathbf{R}^n \rightarrow \mathbf{R}$ を与え $f(\mathbf{x})$ を最小にする $\mathbf{x} \in \mathbf{R}^n$ を求める問題は幅広い応用性を持ってい

¹²これと同等な定理が Cambini^[15] に載っている

斜線部分が式 (12) のレベル集合 *L*(*f*,1) 凸集合にはなっていないので準凸関数ではない

る。*f*(*x*)は目的関数と呼ばれる。最大値を求める問題は目的関数の符号を反転 すれば最小値を求める問題に帰着できるので独立した研究対象とはならない。

変数に対する制約条件と関数に関する条件に応じて、実に多様な方法が存在 し、それらは最適化法と呼ばれている¹³。ここでは変数に対する制約条件が存 在せず、また関数に関しても(微分の存在を仮定しないで)関数値だけに頼る方 法の一つである Nelder-Mead 法(NM 法)を考察する。

この方法は \mathbb{R}^n 上に (アフィン独立な) n+1 個の点を初期条件として与え、 或るアルゴリズムに基づいて動かして行く。アルゴリズムの目標は、これら n+1 個の点がどれも目的関数の最小点に収束することである。n+1 個の点 の動きがアメーバを連想させるので、アメーバ法とも呼ばれている。

最小点が知られている実験的な目的関数をテスト関数と言う¹⁴。テスト関数 に対して妥当な結果を出すか否かはアルゴリズムの良さを調べる最初のステッ プである。NM 法はシンプルながら、多くのテスト関数で良い結果を与えてお り、それ故に多くの支持者を持つ^[20, 18]。

NM 法の提案はヒューリスティクなものであり^[17]、数学的な厳格さを持た なかったために数多くの変種を生み出した。他方では NM 法に数学的な基礎付

¹³最適化法の全体像を纏めたものとしては、例えば藤田 [5] がある。英文ではあるが James[16] も良く纏まっている

¹⁴Gao[21] にはテスト関数の例と実験結果が多数載っている

けを与えようとする Lagarias たちの努力もある。数学の問題として見たこの 方法に対する疑問は次の2つに集約できる:

- (a) n+1 個の点は、ただ1つの点に収束するのか否か?
- (b) 収束した点は目的関数の最小点と一致するのか否か?

ここでは、論点 (a) について、そうした努力の成果を踏まえながら議論したい。

3.1 記号の意味

R 実数の集合

- **R**ⁿ *n* 次元ユークリッド空間
- := 定義あるいは (アルゴリズムの記述の中では) 置き換えを表す
- $I = \{1, 2, \dots, n, n+1\}$
- f(x) 目的関数

3.2 単体 (simplex)

 \mathbf{R}^n のn+1 個の点 $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n+1}$ から生成される単体 (simplex) Δ を

$$\Delta := \operatorname{conv} \{ \boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_{n+1} \}$$
$$= \{ \sum_{i \in I} \lambda_i \boldsymbol{x}_i \; ; \; \lambda_i \ge 0 \; (i \in I), \; \sum_{i \in I} \lambda_i = 1 \}$$

で定義する。また vert Δ を Δ の頂点の集合 { x_i ; $i \in I$ } とする。

一般に dim $\Delta = n$ であるが、 dim $\Delta < n$ の場合、 Δ は**縮退**していると言われる。

3.3 Nelder-Mead 法

用語と記号は基本的に Gao^[21] に従う。以下に現れるパラメータの σ は Gao の論文では δ であるが、収束の証明に使われる δ, ε と紛れるので、Lagarias の 論文に従い σ とした。

Nelder-Mead 法とは、非縮退の単体 △ の頂点の集合に対して、以下の STEP 1 から STEP 6 で示されるアルゴリズムのサイクルを言う。アルゴリズムにお

いては、コンピュータ・プログラムと同様に、各 STEP は原則として次の STEP へ行く。なお、":=" は変数への代入を意味する。また Gao に従い、以下にお いて

$$\alpha > 0, \quad \beta > 1, \quad 0 < \gamma < 1, \quad 0 < \sigma < 1$$
 (13)

とするが、これらの値は標準的な Nelder-Mead 法では

$$\alpha = 1, \quad \beta = 2, \quad \gamma = 1/2, \quad \sigma = 1/2$$
 (14)

である。以下ではこの値を Nelder-Mead 法の標準パラメータと言う。Gao^[21] は、n > 2では、式 (14)の値を

$$\alpha = 1, \quad \beta = 1 + \frac{2}{n}, \quad \gamma = \frac{3}{4} - \frac{1}{2n}, \quad \sigma = 1 - \frac{1}{n}$$
(15)

のように修正した方が良い結果を与えることを実験によって示している。

パラメータを修正した Gao の NM 法を ANM 法 (adaptive Nelder-Mead Method) と言う。アルゴリズムが異なる NM 法も存在する。例えば Wikipedia の "Nelder-Mead method" は STEP 5 を含まない ¹⁵。

STEP 1. 整列: $F_i := f(x_i) (i \in I)$ を計算し

$$F_1 \le F_2 \le \dots \le F_{n+1}$$

となるように x_i ($i \in I$)の添え字iを付け直す(整列する)。その下で

$$\bar{\boldsymbol{x}} := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i, \quad \boldsymbol{x}_{\mathrm{r}} := \bar{\boldsymbol{x}} + \alpha(\bar{\boldsymbol{x}} - \boldsymbol{x}_{n+1}), \quad F_{\mathrm{r}} := f(\boldsymbol{x}_{\mathrm{r}})$$

を計算する。 x_1 を最良点 (best point)、 x_{n+1} を最悪点 (worst point)、 \bar{x} を重心 (centroid)、 x_r を反射点 (reflected point) と言う。

STEP 2. 拡張/反射: $F_r < F_1$ であれば拡張点 (expansion point)

$$\boldsymbol{x}_{\mathrm{e}} := \bar{\boldsymbol{x}} + \beta(\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}), \qquad F_{\mathrm{e}} := f(\boldsymbol{x}_{\mathrm{e}})$$

を計算し、 $F_{\rm e} < F_{\rm r}$ であれば $x_{n+1} := x_{\rm e}$ として、 $F_{\rm e} \ge F_{\rm r}$ であれば $x_{n+1} := x_{\rm r}$ として STEP 1 へ行く。

STEP 3. 反射: $F_1 \leq F_r < F_n$ であれば $x_{n+1} := x_r$ として STEP 1 へ行く。 STEP 4. Outside Contraction: $F_n \leq F_r < F_{n+1}$ であれば

$$\boldsymbol{x}_{\mathrm{oc}} := \bar{\boldsymbol{x}} + \gamma(\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}), \qquad F_{\mathrm{oc}} := f(\boldsymbol{x}_{\mathrm{oc}})$$

を計算する。 $F_{
m oc} \leq F_{
m r}$ であれば $\pmb{x}_{n+1} := \pmb{x}_{
m oc}$ として STEP 1 へ行き、 $F_{
m oc} > F_{
m r}$

¹⁵https://en.wikipedia.org/wiki/Nelder-Mead_method, 2020-07

であれば STEP 6 へ行く。

STEP 5. Inside Contraction: $F_{n+1} \leq F_r$ であれば

 $\boldsymbol{x}_{\mathrm{ic}} := \bar{\boldsymbol{x}} - \gamma(\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}), \qquad F_{\mathrm{ic}} := f(\boldsymbol{x}_{\mathrm{ic}})$

を計算する。 $F_{\rm ic} < F_{n+1}$ であれば $x_{n+1} := x_{\rm ic}$ として STEP 1 へ行き、 $F_{\rm ic} \ge F_{n+1}$ であれば STEP 6 へ行く。

STEP 6. 縮小 (Shrink): i = 2, 3, ..., n+1 について

$$\boldsymbol{x}_i := \boldsymbol{x}_1 + \sigma(\boldsymbol{x}_i - \boldsymbol{x}_1)$$

として STEP 1 へ行く。

STEP 1 から STEP 6 に現れた点 $x_r, x_e, x_{oc}, x_{ic} \ge 2$ 次元の標準パラメータの場合について図 7 に示す。点 x_r は \bigcirc で、 x_e は \bigcirc で、さらに点 x_{oc} は \square で、 x_{ic} は \bigcirc で、さらに点 x_{oc} は \square で、

図 7: 2 次元の *x*_r と *x*_e その他の点 ○: *x*_e (拡張点)、●: *x*_r (反射点) □: *x*_{oc}、■: *x*_{ic}、*x* := (*x*₁ + *x*₂)/2

STEP 1 から始まり、再び STEP 1 に戻るまでを Nelder-Mead 法の 1 サイ クル と言うことにする。 Δ に対して Nelder-Mead 法の 1 サイクルを適用して 生成される単体を Δ_1 とする。また k サイクルで得られる単体を Δ_k とする。 $\Delta_0 := \Delta$ とする。

Gao ^[21] は Lagarias ^[18] に基づいて NM 法の各 STEP を定義しているのであ るが、次の表に見るように、いくらかの違いがある。この表では x の添え字は Gao に従っている。パラメータの表記も Lagarias と Gao は異なる。しかし表 記の違いは本質的ではない。重要な違いは x_{ic} にある。 $\alpha = 1$ の下では違いは ない。どうやら $\alpha = 1$ は動かせないようで、Lagarias も Gao も結局は $\alpha = 1$ を採用している。

Lagarias	Gao
$oldsymbol{x}_r = oldsymbol{ar{x}} + ho(oldsymbol{ar{x}} - oldsymbol{x}_{n+1})$	$\boldsymbol{x}_r = \bar{\boldsymbol{x}} + lpha(\bar{\boldsymbol{x}} - \boldsymbol{x}_{n+1})$
$oldsymbol{x}_e = oldsymbol{ar{x}} + \chi(oldsymbol{x}_{ ext{r}} - oldsymbol{ar{x}})$	$oldsymbol{x}_e = oldsymbol{ar{x}} + eta(oldsymbol{x}_{ ext{r}} - oldsymbol{ar{x}}) = oldsymbol{ar{x}} + lphaeta(oldsymbol{ar{x}} - oldsymbol{x}_{n+1})$
$oldsymbol{x}_{ m oc} = oldsymbol{ar{x}} + \gamma(oldsymbol{x}_{ m r} - oldsymbol{ar{x}})$	$\boldsymbol{x}_{\mathrm{oc}} = \bar{\boldsymbol{x}} + \gamma(\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}) = \bar{\boldsymbol{x}} + \alpha\gamma(\bar{\boldsymbol{x}} - \boldsymbol{x}_{n+1})$
$oldsymbol{x}_{ m ic} = oldsymbol{ar{x}} - \gamma(oldsymbol{ar{x}} - oldsymbol{x}_{n+1})$	$\mathbf{x}_{ic} = \bar{\mathbf{x}} - \gamma(\mathbf{x}_{r} - \bar{\mathbf{x}}) = \bar{\mathbf{x}} - \alpha \gamma(\bar{\mathbf{x}} - \mathbf{x}_{n+1})$

「縮小」が発生しない場合には、NM 法で扱っている問題は、n+1 個の粒子の移動問題としてイメージできる。場 f(x) が与えられ、**場の値** f(x) が最大の粒子 (最悪点の粒子)のみが移動できる。最悪点の粒子は、場の値が小さくなるように移動する。移動先は4箇所だけが許されている。必ずしも場の値が最小の点には移動しない。移動のアルゴリズムを与えているのが NM 法のアルゴリズムである。このようなイメージを基に、しばしば「最悪点が〇〇に移動する」と表現されたりすることもあるが、正確には「最悪点にあった粒子が〇〇に移動する」、あるいは (意味が全く異なるが)「最悪点が〇〇に変化する」である。

このように考えると、添字 *i* (∈ *I*) は粒子の識別子と考えたくなるのである が、場の中での粒子の順位とするのが習慣らしい。またその方が理論を立てや すい。移動したのか、それとも順位が変動したのか、混乱しやすいので要注意 である。混乱を防ぐために、この論文ではしばしば粒子で状況を表現する。

Nelder-Mead 法のアルゴリズム自体は、単体 Δ が縮退していても可能である。 アルゴリズムから解るように、各サイクルの単体 Δ_k は aff Δ_0 から抜け出すこと はできない。しかし Δ_0 が縮退している場合には aff Δ_0 の中に $f(\mathbf{x})$ ($\mathbf{x} \in \mathbf{R}^n$) の最小点を持つことは一般には望むべくもない。目標が \mathbf{R}^n での最小点を見つ けることにある以上、非縮退の条件が付されているのである。

問題 2. $x_{oc} \in (\bar{x}, x_{r})$ および $x_{ic} \in (\bar{x}, x_{n+1})$ となるための、パラメータの条件を求めよ。

答:

$$\boldsymbol{x}_{\mathrm{oc}} = \bar{\boldsymbol{x}} + \gamma (\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}) = (1 - \gamma) \bar{\boldsymbol{x}} + \gamma \boldsymbol{x}_{\mathrm{r}}$$

であるから x_{oc} に関しては $0 < \gamma < 1$ である。他方

$$\boldsymbol{x}_{ic} = \bar{\boldsymbol{x}} - \alpha \gamma (\bar{\boldsymbol{x}} - \boldsymbol{x}_{n+1}) = (1 - \alpha \gamma) \bar{\boldsymbol{x}} + \alpha \gamma \boldsymbol{x}_{n+1}$$

であるから x_{ic} に関しては $0 < \alpha \gamma < 1$ である。

補注: $x_{oc} \in (\bar{x}, x_{r})$ および $x_{ic} \in (\bar{x}, x_{n+1})$ は自然な要請であると思える。 Lagarias のパラメータに関する要求は、この要請に応えている。他方、Gao の は追加条件 $0 < \alpha \gamma < 1$ を要し、煩わしい。

問題 3. 単体 Δ が NM 法の 1 サイクルで Δ' に変化したとする。 $\dim \Delta = n$ で あれば $\dim \Delta' = n$ であることを示せ。

答: $A := \operatorname{aff} \{ x_1, x_2, ..., x_n \}$ とすると、仮定 dim $\Delta = n$ より $x_{n+1} \notin A$ である (問題 1)。従って x_{n+1} と \bar{x} を結ぶ直線 lと Aとの共通部分は \bar{x} のみである。

STEP 6 を除けば最悪点の粒子が移動する点は直線 l 上にあり、そしてx に は移動しない。従ってこの場合には dim Δ' = dim Δ である。STEP 6 では、 相似図形に変化するので、やはり dim Δ' = dim Δ である。

以下では、簡単のため $F_i := f(x_i)$ ($i \in I$) とする。NM 法実行前の最悪点の 粒子は1サイクルの経過によって、他の点 x' に移動する。STEP 6 が実行さ れることがなければ $f(x') < F_{n+1}$ である。STEP 6 で $f(x') \ge F_{n+1}$ となる可 能性を排除できない。なぜなら x_1 と他の点との間に山がある可能性があるか ら。厳密な準凸関数の場合 (従って厳密な凸関数も) 山がある可能性はない。

縮小 (STEP 6) の発生回数は f(x) の極小点の個数と関係していると思える が、それは多分未解決問題である。問題 2 の条件の下では、厳密な準凸関数で あれば縮小は発生しない (補題 2)。

補題 2. $x_{oc} \in (\bar{x}, x_{r}), x_{ic} \in (\bar{x}, x_{n+1})$ とせよ。この下では、f(x)が厳密な準 凸関数であれば NM 法で縮小 (STEP 6) が実行されることはない ¹⁶。

証明:縮小は STEP 4 または STEP 5 の後で発生する。f(x) は厳密な準凸関数 であるから

$$\bar{F} \le \max\{F_1, F_2, ..., F_n\} = F_n$$
 (16)

¹⁶Lagarias^[18]には厳密な凸関数となっているが厳密な準凸関数に条件を緩めることができる

であることに注意する ¹⁷。STEP 4 では $F_n \leq F_r < F_{n+1}$ の条件下で

 $\boldsymbol{x}_{\mathrm{oc}} := \bar{\boldsymbol{x}} + \gamma(\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}), \qquad F_{\mathrm{oc}} := f(\boldsymbol{x}_{\mathrm{oc}})$

を計算し、 $F_{oc} \leq F_{r}$ であれば STEP 6 には行かない。 $f(\mathbf{x})$ は厳密な準凸関数 であり、 $\mathbf{x}_{oc} \in (\bar{\mathbf{x}}, \mathbf{x}_{r})$ であるから $F_{oc} < \max{\bar{F}, F_{r}}$ であるが、式 (16) と条件 $F_{n} \leq F_{r}$ より、 $\bar{F} \leq F_{r}$ である。すなわち $F_{oc} < F_{r}$ であるから STEP 6 には行 かない。

STEP 5 では $F_{n+1} \leq F_r$ の条件下で

 $\boldsymbol{x}_{\mathrm{ic}} := \bar{\boldsymbol{x}} - \gamma(\boldsymbol{x}_{\mathrm{r}} - \bar{\boldsymbol{x}}), \qquad F_{\mathrm{ic}} := f(\boldsymbol{x}_{\mathrm{ic}})$

を計算し、 $F_{ic} < F_{n+1}$ であれば STEP 6 には行かない。f(x) は厳密な準凸関 数であり、 $x_{ic} \in (\bar{x}, x_{n+1})$ であるから $F_{ic} < \max\{\bar{F}, F_{n+1}\}$ であるが、式 (16) と $F_n \leq F_{n+1}$ より $\bar{F} \leq F_{n+1}$ である。従って $F_{ic} < F_{n+1}$ である。

補注:従って厳密な準凸関数 $f(\mathbf{x})$ の下では、最悪点 \mathbf{x}_{n+1} にあった粒子は、 NM 法の 1 サイクルによって、他の点 $\mathbf{x}' \in {\mathbf{x}_{e}, \mathbf{x}_{r}, \mathbf{x}_{oc}, \mathbf{x}_{ic}}$ に移動し、他の場 の値 $F' := f(\mathbf{x}')$ を持つ。具体的には

STEP	case	F'
2	$F_{\rm r} < F_1$	$F' = \min\{F_{\rm e}, F_{\rm r}\} < F_1$
3	$F_1 \le F_{\rm r} < F_n$	$F_1 \le F' = F_{\rm r} < F_n$
4	$F_n \le F_r < F_{n+1}$	$F' = F_{\rm oc} \le F_{\rm r} < F_{n+1}$
5	$F_{n+1} \leq F_{\rm r}$	$F' = F_{\rm ic} < F_{n+1}$

となる。F' は必ず F_{n+1} より小さくなる。 $F_n \leq F'$ の可能性があるのは STEP 4,5 のみである。STEP 1 に戻ると $\{F_1, F_2, ..., F_n, F'\}$ が整列され、次のサイク ルの $\{F'_i ; i \in I\}$ が生成される。従って特に

$$F'_{n+1} = \max\{F_1, F_2, \dots, F_n, F'\} = \max\{F_n, F'\}$$
(17)

$$F_1' = \min\{F_1, F_2, \dots, F_n, F'\} = \min\{F_1, F'\}$$
(18)

である。もっと詳しくは補題4の証明を見よ。

問題 4. 定数関数 f(x) = c の場合にはどうなるか?

答: $F_i = f(\boldsymbol{x}_i) \ (i \in I)$ は全て同じになり、整列の不定性が発生する。そのう

ちの一つを x_1 とすると、STEP 6 まで進み x_1 を中心に縮小する。

問題 5. 縮小が発生しないとせよ。その下で n = 4 として次の例

 $F_1 \le F_2 < F_3 = F_4 = F_5$

を基に最悪値の重複数が NM 法の 1 サイクルで、どのように変化するかを論 ぜよ。

答: NM 法の1サイクルで整列後には

 $F_1' \leq F_2' \leq F_3' < F_4' = F_5'$

の形になる。つまり最悪値と等しいことを表す等号が1つ減る。ここに

 $F'_4 = f(x'_4), \quad x'_4 = x_3, \quad F'_5 = f(x'_5), \quad x'_5 = x_4$ である。従って $F'_5 = F_5$ である。

 \square

補注: 縮小が発生しない場合には、この問題は次の問題と似ている: カードの 組 C があり、各カードには正の実数が書かれている。C の中の最大値のカー ド (最大値のカードが複数ある場合には、その内の一つ)の数字を、それより小 さい正数に書き換える。これを C' とする。 $F_1, F_2, ..., F_m$ を C を整列した値 の列とせよ。同様に C' を整列した値の列 $F'_1, F'_2, ..., F'_m$ を定義する。すると $F'_i \leq F_i$ (i = 1, 2, ..., m) となる。なお全てが等号になることはない。

問題5は容易に一般化される: $\hat{\Delta}_k := \max f(\operatorname{vert} \Delta_k)$ と置くと、縮小が発生しない場合には

$$\hat{\Delta}_k \ge \hat{\Delta}_{k+1}, \quad \hat{\Delta}_k > \hat{\Delta}_{k+n+1}$$

となる。なお $\check{\Delta}_k := \min f(\operatorname{vert} \Delta_k)$ と置くと、縮小が発生したとしても $\check{\Delta}_k \ge \check{\Delta}_{k+1}$ (k=0,1,2,...)

である。

補題 3. 縮小が発生しないならば Δ_0 , Δ_1 , Δ_2 , ... は巡回しない。 証明:

$$H_k := \sum_{i \in I} f(\boldsymbol{x}_i^{(k)})$$

とすると H_k は k について厳密な減少列である。従って巡回しない。 🛛 🗆

定義 3. 以下で使用する記号を次のように定義しておく: Δ_k の頂点 $x_i^{(k)}$ $(i \in I)$ は f(x) によって整列されているとする。すなわち

 $F_i^{(k)} := f(\boldsymbol{x}_i^{(k)}) \ (i \in I), \quad F_1^{(k)} \le F_2^{(k)} \le \dots \le F_{n+1}^{(k)}$

とする。その下での重心を $\bar{x}^{(k)}$ と書く。反射点、拡張点 などについても同様 である。また

$$\begin{split} \bar{F}^{(k)} &:= f(\bar{\boldsymbol{x}}^{(k)}), \quad F_{\rm r}^{(k)} := f(\boldsymbol{x}_{\rm r}^{(k)}), \quad F_{\rm e}^{(k)} := f(\boldsymbol{x}_{\rm e}^{(k)}), \\ F_{\rm oc}^{(k)} &:= f(\boldsymbol{x}_{\rm oc}^{(k)}), \quad F_{\rm ic}^{(k)} := f(\boldsymbol{x}_{\rm ic}^{(k)}) \end{split}$$

とする。

補題 4. 縮小が発生しないならば
$$F_1^{(k)}, F_2^{(k)}, ..., F_{n+1}^{(k)}$$
は k の減少列、すなわち
 $F_i^{(0)} \ge F_i^{(1)} \ge F_i^{(2)} \ge \cdots$ $(i \in I)$ (19)

である。f(x)が下限を持ち、縮小が無限回は発生しないならば減少列は極限 値 F_i^* ($i \in I$)を持ち、或る $K(\geq 0)$ によって

$$F_i^{(K+0)} \ge F_i^{(K+1)} \ge F_i^{(K+2)} \ge \dots \ge F_i^* \quad (i \in I)$$
(20)

$$F_1^* \le F_2^* \le \dots \le F_{n+1}^*$$
(21)

である。

証明:式 (19)の証明:最悪点 $x_{n+1}^{(k)}$ の粒子は1サイクル後には他の点x'に移動する。F' := f(x')とすると $F_i^{(k)} > F' \ge F_{i-1}^{(k)}$ となるiが存在する。その場合、 $F_j^{(k+1)}$ (j = 1, 2, ..., n+1)は下図に示すように

case
$$j < i$$
 : $F_j^{(k+1)} = F_j^{(k)}$ (22)

case
$$j = i$$
 : $F_j^{(k+1)} = F' < F_i^{(k)} = F_j^{(k)}$ (23)

case
$$j > i$$
 : $F_j^{(k+1)} = F_{j-1}^{(k)} \le F_j^{(k)}$ (24)

となり、式 (19) が成り立つ。なお 2 つの極端なケースがある。i = 1 では式 (22) は発生しない。i = n + 1 では式 (24) は発生しない。

式 (20,21)の証明: 縮小は無限回は発生しないとしているので、k が或る値

K を超えると、それから先には縮小は発生しない。すなわち

 $k \geq K \quad \Longrightarrow \quad F_i^{(k)} \geq F_i^{(k+1)} \quad (i \in I)$

となる K が存在する。 $F_1^{(k)}$ は $k \ge K$ で減少列で、しかも下限が存在するの で極限が存在する。これを F_1^* とすると $F_2^{(k)}$ にも下限 F_1^* が存在することに なり、同様に $F_2^{(k)}$ の極限が存在する。そして結局 $F_{n+1}^{(k)}$ も然り。式 (21) は添 字の定義から自明。

補注 1: Lagarias は x' の順位を $F_i^{(k)} > F' \ge F_{i-1}^{(k)}$ として一意に定めている。 彼はこれを "tie-breaking rule" と言う。Lagarias は Δ_k の列が一意に決まって 欲しかったのであろう。

補注 2: tie-breaking rule として他の選び方も可能である。その場合にも補題の 証明の中の式 (22,23,24) は維持されることが示される (以下の「補題 4 の別証」 を見よ)。他の選び方をした場合、補題 4 は $F_i^{(k)}$ が他の値に収束する可能性ま では排除していない。

コンピュータの整列ツールは Lagarias の望むようには整列してくれない。最 悪点が複数存在する場合、どれを選ぼうと結論に影響しないことが保証される べきであろう。関数値が同じグループの中ではランダムに順序付けが可能な ら整列ツールの動作と両立する。次の例は、それが可能であることを示唆して いる。

例 2. 値が記されている 7 枚のカード c_i (i = 1, 2, ..., 7) があり、その値を F_i と する。最初にカードは値によって 3 つのグループに分かれていたとする:

$$G_1 = \{c_1\}, \quad G_2 = \{c_2, c_3, c_4\}, \quad G_3 = \{c_5, c_6, c_7\}$$

すなわち

 $F_1 < F_2 = F_3 = F_4 < F_5 = F_6 = F_7$

とする。カード c_7 の値が更新されて $F'_7 = F_2$ となったとする。新しいグループは次のようになる:

 $G_1 = \{c_1\}, \quad G_2 = \{c_2, c_3, c_4, c_7\}, \quad G_3 = \{c_5, c_6\}$

Lagarias の tie-breaking rule ではカードの順位は次のルールに従う:同じ値 のカードがあれば年功序列であり、新参者には末席が与えられる。他方コン

順位	更新前	Lagarias	無差別
7	$c_7 F_5$	$c_6 F_5$	$c_5 F_5$
6	$c_6 F_5$	$c_5 F_5$	$c_6 F_5$
5	$c_5 F_5$	$c_7 F_2$	$c_3 F_2$
4	$c_4 F_2$	$c_4 F_2$	$c_2 F_2$
3	$c_3 F_2$	$c_3 F_2$	$c_7 F_2$
2	$c_2 F_2$	$c_2 F_2$	$c_4 F_2$
1	$c_1 F_1$	$c_1 F_1$	$c_1 F_1$

表 1: tie-breaking rule による値の変化

ピュータの整列ツールでは、値が同じなら対等な扱いを受け、無差別である。 従って方法による値の変化を比較をすると例えば表1のようになる。「無差別」 の列は一つの例に過ぎない。

更新前の順位 i のカードの値を F_i とする。更新後のものは F'_i とする。更 新がどちらの方法で行われたとしても、この例では

$$\begin{split} F_i &= F_i' \; (i \neq 5), \quad F_5 > F_5' \\ F_1 &< F_2 = F_3 = F_4 < F_5 = F_6 = F_7 \\ F_1' &< F_2' = F_3' = F_4' = F_5' < F_6' = F_7' \end{split}$$

となっていることに注意する。

補題4の別証:補題4の式(19)だけを証明すればよい。式(20,21)は式(19)から得られる。

 $F_i := f(\mathbf{x}_i) \ (i \in I)$ とする。 \mathbf{x}_i を目的関数の値によってグループに分ける。 それらの値の大小関係に従って、グループを小さい方から $G_1, G_2, ..., G_m$ とする。値 F_i たちの添字の定義により

$$F_1 \le F_2 \le \dots \le F_n \le F_{n+1} \tag{25}$$

である。ここに "≤" は "<" または "=" である。異なるグループの要素との比較 では "<" であり、同じグループの要素との比較では "=" である。

 G_m の元の一つxがx'に更新されたとする。それに伴いグループが再編成 される。それを $G'_1, G'_2, ..., G'_{m'}$ とする。またF' = f(x')とする。この場合、 F'と同じ値のグループが存在すればx'はそこに追加され、存在しなければ新 たなグループ {x'}が形成される。 存在する場合: x'は G_l に追加されるとしよう。すると

 $G'_{l} = G_{l} + \{ \boldsymbol{x}' \}, \quad G'_{j} = G_{j} \ (j \notin \{m, l\})$

が成り立つ。すなわち最悪グループの要素が1つ減り、代わりに*G_l グループ*の要素が1つ増えた。式 (25) と同様に

 $F_1' \le F_2' \le \dots \le F_n' \le F_{n+1}'$

を作り式 (25) と比較する。すると G'_l の要素による等号が1つ増加している。 $|G_i|$ で G_i の要素の個数を表す。そして i を

$$i := |G'_1| + |G'_2| + \dots + |G'_l| \tag{26}$$

で定義すると、j < iでは $F'_j = F_j$ である。等号、不等号の関係も維持される。 j > iでは右にシフトするだけであり $F'_j = F_{j-1}$ である。等号、不等号の関係も そのままシフトされる。そしてj = iでは、更新前には $F_{i-1} < F_i$ であったが、 更新後には $F'_{i-1} = F'_i < F'_{i+1}$ になっている、ここに $F'_{i-1} = F_{i-1}, F'_{i+1} = F_i$ である。つまり $F'_i < F_i$ である。

存在しない場合: G' が生成されるとしよう。

 $G'_l := \{ x' \}, \quad G'_j = G_j \ (j < l), \quad G'_j = G_{j-1} \ (j > l)$ であり、従って、式 (26) で定義される i に対して

 $F'_j = F_j \ (j < i), \quad F'_j = F_{j-1} \ (j > i), \quad F'_i < F_i$ となる。(存在する場合と結果は同じ)

補注 1: $F^{(k)} := \{F_1^{(k)}, F_2^{(k)}, ..., F_{n+1}^{(k)}\}$ と置くと、 $F^{(0)}, F^{(1)}, F^{(2)}, ...$ の列は tie-breaking rule に依存しないことを、この補題は意味している。もちろん、 vert Δ_0 , vert Δ_1 , vert Δ_2 , ... の列は tie-breaking rule に依存している。

補注 2:式 (26) による *i* は Lagarias が tie-breaking rule で定めた挿入位置に
 他ならない。従って無差別の tie-breaking rule においても補題 4 の証明中の式
 (22,23,24) は成立していることになる。

$$F_j = F'_j \ (j < i), \quad F_i \neq F'_i$$

となる i が存在する。この i は、式 (26) の i に他ならない。従って、式 (22,23,24) を満たしているのである。以降、この i を「 F'_i ($j \in I$) の**更新位置**」と呼ぼ う¹⁸。以下では無差別の tie-breaking rule を前提に議論を展開する。

補題 5. *F*'_{*i*} (*i* ∈ *I*) を *F*_{*i*} (*i* ∈ *I*) の更新とすると

 $\exists l: F_l > F'_l \implies \forall j \ (>l): F'_j = F_{j-1}$

証明: $F_l > F'_l$ ならば F'_j $(j \in I)$ の更新位置 i は $i \leq l$ を満たす。従って式 (24) より $F'_j = F_{j-1}$ (j > i) である。ゆえに $F'_j = F_{j-1}$ (j > l) である。 □

補題 6. 縮小が発生しないならば、 $F_i^{(k)}$ $(i \in I)$ が無限回更新される i、すなわち $F_i^{(k)} > F_i^{(k+1)}$ となる kが無限個存在するような i、の中で最小のものを lとすると、 $F_{n+1}^* = F_n^* = \cdots = F_l^*$ となる。

証明:仮に $F_l^* \neq F_{l+1}^*$ とすると

 $\lim_{k\rightarrow\infty}F_{l+1}^{(k)}=F_{l+1}^*>F_l^*=\lim_{k\rightarrow\infty}F_l^{(k)}$

となるから

 $k \ge K \implies F_{l+1}^{(k)} \ge F_{l+1}^{(k+1)} \ge \cdots \ge F_{l+1}^* > F_l^{(k)} \ge F_l^{(k+1)} \ge \cdots \ge F_l^*$ となる K が存在する。 $F_l^{(k)}$ ($k \ge K$) は無限回更新されるので $F_l^{(k')} > F_l^{(k'+1)}$ となる k' (> K) が存在する。従って補題5の $j \ge l+1 \ge l \subset F_{l+1}^{(k'+1)} = F_l^{(k')}$ となる。他方 $F_l^{(k')} < F_{l+1}^*$ であったから $F_{l+1}^{(k'+1)} < F_{l+1}^* \ge c$ なり、式 (20) に矛 盾する。従って $F_l^* = F_{l+1}^*$ である。これを繰り返して補題の主張を得る。 補注: $F_{n+1}^{(k)}$ だけが無限回更新されることはあり得る。その場合補題のlはn+1であり、 $F_{n+1}^* = F_n^*$ は主張されていない。しかし次の補題がある。

補題 7. f(x) が下限を持ち、連続かつ厳密な準凸関数であれば $F_n^* = F_{n+1}^*$ となる ¹⁹。ただし $|\alpha\gamma| < 1$ とする。

証明: $F_n^* \leq F_{n+1}^*$ であるから $F_n^* < F_{n+1}^*$ として矛盾を導く。この場合 $k \geq K$ となる全ての k で $F_n^* \leq F_n^{(k)} < F_{n+1}^*$ となる K が存在する。k のこの領域で

¹⁸Lagarias の "change index" と似ているが、Lagarias のは x_i の i である。他方、ここでの「更新位置」は目的関数の値に基づいている

¹⁹証明は基本的に Lagarias^[18] による。ただし Lagarias は下限を持つ厳密な凸関数として証明 している。ここでは条件が緩められている

 $F_{n+1}^{(k+1)} = F_n^{(k)}$ はあり得ない。なぜなら $F_{n+1}^{(k)} = F_n^{(k)} < F_{n+1}^*$

となり、式(20)に矛盾する。

 $F_{n+1}^{(k+1)} = F_n^{(k)}$ は最悪点の粒子が $F(x') \le F_n^{(k)}$ となる点 x' に移動したこ とを意味する。しかし、この移動は発生しないから $F(x') > F_n^{(k)}$ である。こ のことは NM 法の STEP 4 または STEP 5 のみが実行されることを意味してい る。また $F(x') > F_n^{(k)}$ であるから $k \ge K$ で $x_i^{(k)}$ $(i \le n)$ は変化しない。特に $f(x_n^{(k)}) = F_n^{(k)} = F_n^*$ である。そこで以下では $x_i^{(k)}$ $(i \le n)$ については肩付の "(k)" を省略する。 $\bar{x} := \frac{1}{n} \sum_{i=1}^n x_i$ も同様である。従って

 $f(\bar{x}) \le \max\{f(x_1), f(x_2), ..., f(x_n)\} = f(x_n) = F_n^*$

である²⁰。そして

 $x_{r}^{(k)} - \bar{x} = -\alpha(x_{n+1}^{(k)} - \bar{x}), \quad x_{oc}^{(k)} - \bar{x} = \gamma(x_{r}^{(k)} - \bar{x}), \quad x_{ic}^{(k)} - \bar{x} = -\gamma(x_{r}^{(k)} - \bar{x})$ であり、次のサイクルで $x_{n+1}^{(k)}$ は $x_{oc}^{(k)}$ または $x_{ic}^{(k)}$ で置き換えられる。k回目のサイクルにおける $x_{n+1}^{(k)} - \bar{x} \in z^{(k)}$ とすると

 $\boldsymbol{z}^{(k+1)} = \mp \alpha \gamma \boldsymbol{z}^{(k)}$

である。 ∓ の符号は $\mathbf{x}_{oc}^{(k)}$ が採用されたか、それとも $\mathbf{x}_{ic}^{(k)}$ が採用されたかで決まる。従って $|\alpha\gamma| < 1$ であれば $k \to \infty$ で $\mathbf{z}^{(k)} \to \mathbf{0}$ である。従って $f(\mathbf{x})$ が連続であれば $f(\bar{\mathbf{x}} + \mathbf{z}^{(k)}) \to f(\bar{\mathbf{x}})$ となる。すなわち $k \to \infty$ で $F_{n+1}^{(k)} \to f(\bar{\mathbf{x}})$ である。ゆえに $F_{n+1}^{(k)} < F_n^* < F_{n+1}^*$ となり、式 (20) に矛盾する。

注意: 以下では、補題4の F_i^* ($i \in I$) が証明において重要な役割を演じる。しかし、「下限を持ち、連続かつ厳密な準凸関数」の条件だけでは、 $F_i^* = f(x_i^*)$ となる点 x_i^* が目的関数の定義域に存在することは言えない。そもそも最小点の存在すら保障されないことは、1 変数の $f(x) = e^{-x}$ を考えてみれば解る。従って Nelder-Mead 法が機能するためには目的関数に対して追加条件が必要なのである。そこで以下では追加条件として、1 変数の問題では最小点が存在すること、多変数の問題では (さらに強く) 全てのレベル集合が有界であることを要求する²¹。

 $^{^{20}}$ "<" ではなく " \leq " となっているのは n = 1 に対応するためである

²¹本当は多変数の場合も「最小点の存在」だけで済むのかも知れないが、ここでは簡単のために、

4 1次元 Nelder-Mead 法

1 次元 Nelder-Mead 法は多次元の Nelder-Mead 法の基礎になっている。なぜな ら最悪点の粒子が重心に向かって移動している間は、実際には1次元の問題を 扱っていることになっているからである。

1 次元の場合には Nelder-Mead 法のサイクルは次のようになる: vert $\Delta = \{x_1, x_2\}$ から出発し、以下のアルゴリズムに従う。

STEP 1': $F_1 := f(x_1), F_2 := f(x_2), F_1 \leq F_2$ となるよう x_1, x_2 を整列する。 その下で $\bar{x} := x_1, \bar{F} := f(\bar{x}) = F_1, x_r := \bar{x} + \alpha(\bar{x} - x_2), F_r := f(x_r)$ を計算 する。

STEP 2': case $F_r < F_1$: $x_e := \bar{x} + \beta(x_r - \bar{x}), F_e := f(x_e)$ を計算する。 $F_e < F_r$ なら $x_2 := x_e$ として、 $F_e \ge F_r$ なら $x_2 := x_r$ としてSTEP 1' へ行く。 STEP 4': case $F_1 \le F_r < F_2$: $x_{oc} := \bar{x} + \gamma(x_r - \bar{x}), F_{oc} := f(x_{oc})$ を計算す る。 $F_{oc} \le F_r$ なら $x_2 := x_{oc}$ としてSTEP 1' へ行く。 $F_{oc} > F_r$ ならSTEP 6' へ。

STEP 5': case $F_2 \leq F_r$: $x_{ic} := \bar{x} - \gamma(x_r - \bar{x}), F_{ic} := f(x_{ic})$ を計算する。 $F_{ic} < F_2$ なら $x_2 := x_{ic}$ としてSTEP 1' へ行く。 $F_{ic} \geq F_2$ ならSTEP 6' へ。 STEP 6': $x_2 := x_1 + \sigma(x_2 - x_1)$ としてSTEP 1' へ行く。

なお STEP 3' は $F_1 \leq F_r < F_1$ となり成立しない。また f(x) が厳密な準凸 関数の場合には STEP 4',5' において STEP 6' へ行く条件は成立しない (補題 2)。 補注 1: 厳密な準凸関数の場合には、このアルゴリズムは循環しない (補題 3)。 補注 2: アルゴリズムの停止問題は循環問題に比べて厄介である。通常は停止 条件を直径で決める。直径は Δ に含まれる 2 点間の最大距離で定義される。

補題 8. f(x) を厳密な準凸関数とせよ。すると開区間 (a,b) に対して

 $\exists c: c \in (a,b) \text{ and } f(c) \leq \min\{f(a), f(b)\} \implies \check{x} \in (a,b)$ である。ここに \check{x} は f(x) の最小点である。

全てのレベル集合の有界性を要求する。しかし補題 10 の補注にあるように、実際には「全て」で ある必要はない

証明:まず $x \notin \{a,b\}$ である。なぜなら $x \in \{a,b\}$ とすると $f(x) \leq f(c) \leq \min\{f(a), f(b)\} = f(x)$ より f(x) = f(c) を得る。 $x \neq c$ とすれば $f((x + c)/2) < \max\{f(x), f(c)\} = f(x)$ となり f(x) は最小値にはならない。従って $x = c \in (a,b)$ となるが、これは $x \in \{a,b\}$ の仮定と矛盾する。

条件 $f(c) \le \min\{f(a), f(b)\}$ は

 $f(c) \le f(a)$ and $f(c) \le f(b)$

である。そこで $\dot{x} < a$ または $b < \dot{x}$ として矛盾を導く: case $\dot{x} < a$: $a \in (\dot{x}, c)$ より $f(a) < \max\{f(\dot{x}), f(c)\} = f(c)$ となるが、 $f(c) \leq f(a)$ と矛盾する。

case $b < \check{x}$: $b \in (c,\check{x})$ より $f(b) < \max\{f(c), f(\check{x})\} = f(c)$ となるが、 $f(c) \leq f(b)$ と矛盾する。

補題 9. f(x) は厳密な準凸関数とする。f(x) の最小点 \tilde{x} が存在すれば、f(x) は \tilde{x} の左側では厳密な減少、右側では厳密な増加である。

証明: ƒ(x) は厳密な準凸関数であるから ǎ < x < x′ であれば

 $f(x) < \max\{f(\check{x}), f(x')\} = f(x')$

であるから \tilde{x} の右側では f(x) < f(x') となり厳密な増加であることが解る。 \tilde{x} の左側では厳密な減少であることも同様に解る。

 $f(x_2) \ge f(x_1)$ とする。その下で、与えられた区間 $\Delta = [x_2, x_1] (x_2 < x_1)$ から出発して、NM 法で関数 $f(x) (x \in \mathbf{R})$ の最小点を求める問題を考える。1 次元ゆえ

 $x_2 < x_{\rm ic} < x_1 = \bar{x} < x_{\rm oc} < x_{\rm r} < x_{\rm e}$

である。 $f(x_2), f(x_1), f(x_r)$ の大小の組み合わせと、最小点 \tilde{x} の可能な存在範囲 $\tilde{\Delta}$ の関係、および次のサイクルでの Δ' を表 2 に示す。

この表では $x_2 < x_1$ を仮定しているが、 $x_1 < x_2$ の場合には鏡映的な表が得られる。それの表を作るよりも座標の向きを反転して考えた方が簡単である。

なお STEP 4' は $f(x_2) > f(x_r) \ge f(x_1)$ であるが表では T_4, T_8 に分かれて いる。また STEP 5' は $f(x_2) \ge f(x_1) > f(x_r)$ であるが表では T_2, T_9 に分かれ ている。

Туре	関数値の大小関係	Δ'	$\widetilde{\Delta}$	STEP
T_1	$f(x_2) = f(x_1) = f(x_r)$	none		
T_2	$f(x_2) = f(x_1) < f(x_r)$	$[x_{\mathrm{ic}}, x_1]$	(x_2, x_1)	STEP 5'
T_3	$f(x_2) = f(x_1) > f(x_r)$	none		
T_4	$f(x_2) > f(x_1) = f(x_r) < f(x_e)$	$[x_1, x_{\mathrm{oc}}]$	(x_1, x_r)	STEP 4'
T_5	$f(x_2) > f(x_1) = f(x_r) \ge f(x_e)$	none		
T_6	$f(x_2) > f(x_1) > f(x_r) \le f(x_e)$	$[x_1, x_r]$	(x_{1}, x_{e})	STEP 2'
T_7	$f(x_2) > f(x_1) > f(x_r) > f(x_e)$	$[x_1, x_{\mathrm{e}}]$	$(x_{ m r},\infty)$	STEP 2'
T_8	$f(x_2) > f(x_1) < f(x_r), \ f(x_r) < f(x_2)$	$[x_1, x_{\mathrm{oc}}]$	(x_2, x_r)	STEP 4'
T_9	$f(x_2) > f(x_1) < f(x_r), \ f(x_2) \le f(x_r)$	$[x_{\mathrm{ic}}, x_1]$	(x_2, x_r)	STEP 5'

表 2: 厳密な凸関数 / 厳密な準凸関数の最小点の位置

 $\widetilde{\Delta}$ は最小点の可能な存在範囲である。 (x_2, x_1) などは最小点が存在する区間を表している。 $x_2 や x_1$ の代わりに x_r などとなっていても同様である。 全て開区間である。"none"は存在しないことを意味する。

定義 4. 点 x と集合 S との距離を

$$\operatorname{dist}(\boldsymbol{x},S) := \min\{|\boldsymbol{x} - \boldsymbol{x}'| \; ; \; \boldsymbol{x}' \in S\}$$

で表す²²。

定義 5. 集合 S の直径を diam $S := \max\{|x_1 - x_2| ; x_1, x_2 \in S\}$ として定義 する ²³。

問題 6. f(x) は厳密な準凸関数とする。すると NM 法の 1 サイクルで単体 $\Delta = [x_2, x_1]$ が $\Delta' = [x'_2, x'_1]$ に変化したとすると、式 (14) の標準パラメータ の場合には

 $\operatorname{dist}(\check{x},\Delta) < 2\operatorname{diam}\Delta \implies \operatorname{dist}(\check{x},\Delta') < 2\operatorname{diam}\Delta'$ (27) となることを示せ。

答:表2に示すように Type T_7 以外は明らか。 T_7 は次の通り:条件 dist $(\tilde{x}, \Delta) < 2$ diam Δ ゆえ $\tilde{x} \in [x_2, x_e)$ である。従って

$$\begin{split} &\check{x} \in [x_2, x_e) \cap (x_r, \infty) = (x_r, x_e) \quad \therefore \ \mathrm{dist}(\check{x}, [x_2', x_1']) = \mathrm{dist}(\check{x}, [x_1, x_e]) = 0 \\ & \mathfrak{C}, \ \mathrm{式} \ \mathbf{27} \ \mathrm{kk} \dot{\mathrm{k}} \, \mathrm{L} \, \mathrm{C} \, \mathrm{V} \, \mathrm{S}_\circ \end{split}$$

²²厳密には min ではなく inf とすべきだが、ここでは min で足りる問題しか扱わない
²³厳密には "sup" とすべきだが、ここでは "max" で足りる問題しか扱わない

補注 1: 従って、式 (27) の条件下で直径が 0 に収束すれば、単体列は最小点に 収束する。

補注 2: α, β, γ で距離 dist $(\check{x}, \Delta') = \mu \operatorname{diam} \Delta'$ を表すと

$$\begin{array}{ll} \text{Fype} & \mu \\ T_2 & 0 \leq \mu < \frac{1}{\alpha\gamma} - 1 \\ T_4 & 0 \leq \mu < \frac{1}{\gamma} - 1 \\ T_6 & 0 \leq \mu < \beta - 1 \\ T_8 & 0 \leq \mu < \max\{\frac{1}{\alpha\gamma}, \frac{1}{\gamma} - 1\} \\ T_9 & 0 \leq \mu < \max\{\frac{1}{\gamma}, \frac{1}{\alpha\gamma} - 1\} \end{array}$$

となる。従って

 $\operatorname{dist}(\check{x},\Delta') \leq \hat{\mu}\operatorname{diam}\Delta' \quad \complement \subset \iota \subset \hat{\mu} := \max\{\frac{1}{\alpha\gamma}, \frac{1}{\gamma}, \beta - 1\}$

となる。

Type T_7 の場合、条件 dist $(\check{x}, \Delta) < \alpha\beta$ diam Δ が成立していれば dist $(\check{x}, \Delta') = 0$ である。従って式 (27) に代わって

 $\operatorname{dist}(\check{x}, \Delta) < \alpha\beta \operatorname{diam} \Delta \implies \operatorname{dist}(\check{x}, \Delta') < \hat{\mu} \operatorname{diam} \Delta'$ が得られる。NM 法の収束性を問題にするときに

 $\operatorname{dist}(\check{x}, \Delta) < M \operatorname{diam} \Delta \implies \operatorname{dist}(\check{x}, \Delta') < M \operatorname{diam} \Delta'$ となる $M \in \mathbf{R}$ が存在すれば大いに役にたつ。 $\hat{\mu} \leq \alpha\beta$ であれば M として $\alpha\beta$ を選択できる。 $\alpha = 1$ とした場合には、この条件は $\beta\gamma \geq 1$ である ²⁴。

問題 7. 問題 6 と同じ仮定の下で

 $2 \operatorname{diam} \Delta \leq \operatorname{dist}(\check{x}, \Delta)$

 $\implies \quad \operatorname{diam} \Delta' = 2 \operatorname{diam} \Delta, \quad \operatorname{dist}(\check{x}, \Delta') = \operatorname{dist}(\check{x}, \Delta) - 2 \operatorname{diam} \Delta$ となることを示せ。

答: 条件 2 diam $\Delta \leq \operatorname{dist}(\check{x}, \Delta)$ の下では Type T_7 のみが可能である。従って $x'_2 = x_1, \ x'_1 = x_e$ であり diam $\Delta' = |x_1 - x_e| = 2 \operatorname{diam} \Delta$ である。また $\check{x} \in [x_e, \infty) \cap [r, \infty) = [x_e, \infty)$ であるから、

 $\operatorname{dist}(\check{x},\Delta') = \check{x} - x_1' = \check{x} - x_e$

²⁴この条件が満たされていない場合には問題が発生するか否かは検討を要する

$$= \check{x} - x_1 - (x_e - x_1) = \operatorname{dist}(\check{x}, \Delta) - 2\operatorname{diam}\Delta$$

を得る。

問題 8. *f*(*x*) が最小値を持つ厳密な準凸関数であれば、NM 法のサイクルを繰り返して

 $\operatorname{dist}(\check{x}, \Delta_k) < \alpha \beta \operatorname{diam} \Delta_k$

となる k が存在することを示せ。

答: $\Delta = [x_2, x_1]$ として、 α, β, γ で表すと

 $\alpha\beta \operatorname{diam} \Delta \leq \operatorname{dist}(\check{x}, \Delta)$

⇒ diam $\Delta' = \alpha\beta$ diam Δ , dist $(\check{x}, \Delta') =$ dist $(\check{x}, \Delta) - \alpha\beta$ diam Δ となる。なぜなら、条件 $\alpha\beta$ diam $\Delta \leq$ dist (\check{x}, Δ) は $\check{x} \in [x_{e}, \infty)$ を意味してい る。従って、この条件は Type T_7 で発生する。 $\Delta' = [x_1, x_{e}]$ となるので、結論 部が得られる。

NM 法の k サイクル後の単体 $\Delta を \Delta_k$ で表すと

$$\operatorname{dist}(\check{x}, \Delta_k) = \operatorname{dist}(\check{x}, \Delta_0) - \sum_{i=1}^k (\alpha \beta)^i \operatorname{diam} \Delta_0$$

となる。従って条件 $\alpha\beta$ diam $\Delta \leq dist(x, \Delta)$ の下で NM 法のサイクルを繰り返 すと、diam $\Delta_0 \neq 0$ and $\alpha\beta > 1$ であれば、遅かれ早かれこの条件は破られる。 なお式 (14) の標準パラメータの場合には $\alpha\beta = 2$ である。

補注: 1 次元問題がうまく処理されるためには $\alpha = 1$, $\beta \gamma \ge 1$ となってい れば都合が良い。しかしながら式 (15) で定義される Gao のパラメータでは、 $1/\gamma = 4n/(3n-2)$ ゆえ

n	β	$1/\gamma$
2	2	2
3	1.66	1.71
4	1.5	1.6
5	1.4	1.53

となり、満たされていない²⁵。

25このことが実際に問題をもたらすかどうかは検討が必要である

次に式 (14) で与えられる NM 法の標準パラメータの場合について収束の速度を調べる。 $\Delta = [x_2, x_1]$ とする。 \hat{x} の位置と、次のサイクルの状態との関係を調べる。簡単のため

$$s := \operatorname{diam} \Delta = |x_1 - x_2|, \quad t := \operatorname{dist}(\check{x}, \Delta)$$

と略記する。s' と t' についても $\Delta \varepsilon \Delta'$ で置き換えて同様に定義する。 case $\check{x} = x_2$: $f(\check{x}) = f(x_2) \ge f(x_1)$ ゆえ $x_1 = x_2$ となり条件に反す。 case $\check{x} \in (x_2, x_1]$: Type T_2, T_8, T_9 が可能 (表 2)。 t = 0, s' = s/2 である (表 2)。 T_8 の場合 $t' = x_1 - \check{x} < s = 2s'$ そして T_2, T_9 の場合 $t' = \max\{0, x_{ic} - \check{x}\} < s/2 = s'$ となる。 case $\check{x} \in (x_1, x_r)$: Type T_4, T_6, T_8, T_9 が可能。その場合 0 < t < s である。 T_4, T_8, T_9 で s' = s/2、他方 T_6 で s' = s となる。 T_6 の場合 t' = 0、そして T_4, T_8 の場合 $t' = \max\{0, \check{x} - x_{oc}\} < s/2$ 、また T_9 の場合 t' = t となる。 case $\check{x} \in [x_r, x_e)$: Type T_6, T_7 が可能。その場合 $s \le t < 2s$ である。 T_6 の場 case $\check{x} \in [x_r, x_e)$: Type T_6, T_7 が可能。その場合 $s \le t < 2s$ である。 T_6 の場 case $\check{x} \in [x_r, x_e)$: Type T_6, T_7 が可能。その場合 $s \le t < 2s$ である。 T_6 の場 case $\check{x} \in [x_r, x_e)$: Type T_6, T_7 が可能。その場合 $s' = s - x_r$ であるが、 case $\check{x} < x_e$ より t' = s = s' を得る。 T_7 の場合 t' = 0 となる。

case $\check{x} \in [x_{e}, \infty)$: Type T_7 が可能。その場合 $t \ge 2s$ である。 $s' = 2s, t' = \check{x} - x_{e} = t - 2s$ となる。よって 2s' + t' = 2s + tを得る。

以上を纏めると表3のようになる。この表では状態をt/sで表している。 \hat{x} の 欄は、最小点の位置を区間で表している。従って例えば $(x_2, x_1]$ は $\hat{x} \in (x_2, x_1]$ を意味している。t/sの欄は $t \ge s \ge$ の関係を表している。Type は関数値がと るパターンであり、表2に載っている。s'/sの欄は遷移に伴う直径の変化を表 しており、収束を調べる上で必要になる。t'/s'の欄からは次の状態が判る。例 えば $\hat{x} \in (x_2, x_1]$ の T_8 ではt'/s' < 2である。表のt/s欄を見るとt'/s'のこ の範囲には $\hat{x} \in (x_1, x_r)$ の $0 < t/s < 1 \ge$ 、 $\hat{x} \in (x_r, x_e)$ の $1 < t/s < 2 \ge$ があ る。このことから $\hat{x} \in (x_2, x_1]$ の状態は次のサイクルで $\hat{x} \in (x_1, x_r)$ あるいは $\hat{x} \in (x_r, x_e)$ に移ることが判る。

表 3 から得られる状態遷移図を図 8 に示す。なお $\tilde{x} \in [x_{e}, \infty)$ のケースは問題 8 で扱われている。

問題 9. 図 8 において

$$\check{x} \in (x_2, x_1] \xrightarrow{T_8} \check{x} \in [x_r, x_e) \xrightarrow{T_7} \check{x} \in (x_2, x_1]$$

ž	$\tau := t/s$	Туре	s'/s	$\tau' := t'/s'$
$(x_2, x_1]$	$\tau = 0$	T_8	1/2	$\tau' < 2$
		T_{2}, T_{9}	1/2	$\tau' < 1$
(x_1, x_r)	$0 < \tau < 1$	T_4, T_8	1/2	$\tau' < 1$
		T_6	1	$\tau' = 0$
		T_9	1/2	$\tau' < 2$
$[x_{\rm r}, x_{\rm e})$	$1 \le \tau < 2$	T_6	1	$\tau' < 1$
		T_7	2	$\tau' = 0$
$[x_{\rm e},\infty)$	$2 < \tau$	T_7	2	t' = t - 2s

表 3: 状態遷移表

 $s = \operatorname{diam} \Delta, \ t = \operatorname{dist}(\check{x}, \Delta)$ としている

図 8: 状態遷移図

*T*_{2,9} は *T*₂, *T*₉ の簡略表示である。他も同様 括弧内に遷移に伴う直径の変化を倍率で示している

の遷移は発生しないことを示せ。

答: $\check{x} \in (x_2, x_1]$ であるから

 $f(x_1) < f(x_{oc}) < f(x_r) < f(x_e)$

である (補題 9)。そこで問題の要請に従って、状態 $x \in (x_2, x_1]$ が T_8 によって 状態 $x \in [x'_r, x'_e)$ に遷移したとする。x' としたのは、1 サイクルを経過してい るからである。表 2 により $\Delta' = [x_1, x_{oc}]$ であるが、 $f(x_1) < f(x_{oc})$ ゆえ、座 標の向きを反転し、次のように対応づける。

x と *x*′ との間に

 $x_2' = x_{
m oc}, \quad x_1' = x_1, \quad x_{
m r}' = x_{
m ic}, \quad x_{
m e}' = x_2$

の関係があることに留意する。また

$$f(x_{\rm ic}) < \max\{f(x_1), f(x_2)\} = f(x_2)$$

であるから

$$f(x'_2) > f(x'_1), \quad f(x'_r) = f(x_{ic}) < f(x_2) = f(x'_e)$$

であり、表2により次の遷移はT₇にはなり得ない。

問題10. 図8において

$$\check{x} \in [x_{\mathrm{r}}, x_{\mathrm{e}}) \xrightarrow{T_{7}} \check{x} \in (x_{2}, x_{1}] \xrightarrow{T_{8}} \check{x} \in [x_{\mathrm{r}}, x_{\mathrm{e}})$$

の遷移は発生しないことを示せ。

答:表2より*T*7ならば

 $f(x_2) > f(x_1) > f(x_r) > f(x_e), \quad \Delta' = [x_1, x_e]$

である。これは $\dot{x} \in [x_r, x_e)$ の条件とは矛盾していない。次のサイクルで

$$x'_2 = x_1, \quad x'_1 = x_e, \quad x'_{ic} = x_r$$
 (28)

となる。 $f(x_{\rm r}) > f(x_{\rm e})$ ゆえ $\check{x} \neq x_{\rm r}$ である。ゆえに $\check{x} \in (x_{\rm r}, x_{\rm e}) = (x'_{\rm ic}, x'_1)$ となる。従って $f(x'_1) < f(x'_{\rm oc})$ である。ゆえに

 $f(x_2') = f(x_1) > f(x_{\rm e}) = f(x_1') < f(x_{\rm oc}') < f(x_{\rm r}')$

である。これは表 2 の T_8 と T_9 の条件である。 T_8 では条件 $f(x'_r) < f(x'_2)$ が 追加される。従って式 (28) を得たのと同様にして

 $x_1'' = x_1', \quad x_2'' = x_{\rm oc}', \quad x_{\rm r}'' = x_{\rm ic}'$

となり、式 (28) と合わせて、 $\check{x} \in (x_{\rm r}, x_{\rm e}) = (x'_{\rm ic}, x'_1) = (x''_{\rm r}, x''_1)$ すなわち $\check{x} \notin [x''_{\rm r}, x''_{\rm e})$ となる。

補注:図8および問題9と問題10によって、 $\dot{x} < x_e$ の条件の下、NM法の4 サイクルで Δ の直径が少なくとも1/2に縮小されることが判る²⁶。従って、 $2^{26}4$ サイクルとは、図8の $T_7, T_{2,8,9}, T_6, T_8$ である。これが実現不能であれば3サイクルになる

問題6および問題8と合わせて、1次元のNelder-Mead 法は最小点に収束する ことが示されたことになる。

5 多次元の Nelder-Mead 法

Nelder-Mead 法 (NM 法) のサイクルによって目的関数 f(x) の <u>最小点</u> に単体列 $\Delta_k \ (k = 0, 1, 2, ...)$ が収束することを示すのは簡単ではなく、この論文では扱 わない。

Gao[21] までの到達点を簡単に整理すると、McKinnon[20] は単体列の直径が 0 に収束しても最小点には収束しない2変数の厳密な凸関数の例を示し、基礎 研究の重要性を訴えた。

Lagarias[18] は McKinnon の研究を受けて、目的関数が1変数、および2変数の場合に、目的関数のレベル集合が有界で厳密な凸関数であれば単体列の直径は必ず0に収束することを示した。

Gao[21] は目的関数が多変数の場合に、条件を一様な凸関数 (uniformly convex) に強めて、Nelder-Mead 法の反射が無限に継続して繰り返すことが無ければ、 単体列の直径は必ず 0 に収束することを示した。一様な凸関数とは、任意の $x_1, x_2 \in \mathbf{R}^n, \lambda \in (0, 1)$ について

 $f((1 - \lambda)\mathbf{x} + \lambda\mathbf{x}_2) \leq (1 - \lambda)f(\mathbf{x}_1) + \lambda f(\mathbf{x}_2) - \lambda(1 - \lambda)\rho(|\mathbf{x}_1 - \mathbf{x}_2|)$ となる、条件 $\rho(0) = 0$ を満たす厳密な増加関数 $\rho(t)$ が存在することである ^[21] 。例えば $\rho(t) = ct^2 \ (c > 0)$ でもよい。この場合には strongly convex と言われ ている ²⁷。

この論文では Gao のアプローチとは逆に、目的関数の条件を緩めて、レペ ル集合が有界で、連続かつ厳密な準凸関数とし、Gao と同様に次の結論を得る: 反射が無限に継続して繰り返すことが無ければ単体列の直径は0に収束する。

注意: (1) 単体列の直径が 0 に収束する、(2) 単体列が一点に収束する、(3) 単体 列が *f*(*x*) の最小点に収束する、の主張は (1),(2),(3) の順で強くなる。現状では (2) はおろか、(1) も未解決の問題を抱えていることが解るであろう。

²⁷Urruty[7] p.143。t² に採られるのは微分との相性が良いからである

5.1 記号の意味

この節は第3節の続きである。従って使用される記号は(原則として)全て第3 節から継続している。特に次の記号が含まれる:

 $R, R^n, :=, I := \{1, 2, ..., n+1\}, f(x)$

 $oldsymbol{x}_i \ (i \in I), \quad oldsymbol{ar{x}}, \quad oldsymbol{x}_{
m r}, \quad oldsymbol{x}_{
m e}, \quad oldsymbol{x}_{
m oc}, \quad oldsymbol{x}_{
m ic}$

 x_i $(i \in I)$ は目的関数 f(x) で整列されているとする。すなわち NM 法の STEP 1 は既に実行されているとする。NM 法の k サイクルで生成される点 $x_i^{(k)}$ $(i \in I)$ についても同様である。さらに

 $ar{m{x}}^{(k)}, \ \ m{x}^{(k)}_{
m r}, \ \ m{x}^{(k)}_{
m e}, \ \ m{x}^{(k)}_{
m oc}, \ \ m{x}^{(k)}_{
m ic}$

も第3節の定義を引き継ぐ。また

$$\begin{split} F_i^{(k)} &:= f(\boldsymbol{x}_i^{(k)}) \quad (i \in I, \ k \in \{0, 1, 2, \ldots\}) \\ F_i^* &:= \lim_{k \to \infty} F_i^{(k)} \quad (i \in I) \end{split}$$

についても同様で、 $F_i^{(k)}$, F_i^* の性質は補題4で説明されている。

5.2 コンパクト集合

以下の証明法では、(任意に与えられた $\mu \in \mathbf{R}$ に対して) レベル集合

 $L(f,\mu) := \{ \boldsymbol{x} ; f(\boldsymbol{x}) \le \mu, \ \boldsymbol{x} \in \boldsymbol{R}^n \}$

がコンパクト集合であることが使われている。コンパクト集合の定義はここで は解説しない²⁸。解説には多くのスペースが要求される。しかし次の定理を 知っていれば十分である:

- (a) 有界な閉集合はコンパクト集合である。その逆も然り
- (b) コンパクト集合の無限点列は集積点を持つ

(c) コンパクト集合の無限点列の中に収束する部分点列が存在する

ある集合内の無限点列が (その集合の中で) 収束するためには有界性が要 求されることは明らかである。有界な集合、例えば区間 (0,1) の中の点列 1/1,1/2,1/3,...は0に収束する。0 はこの点列の集積点であるが (0,1) の中に は無い。つまり集合の中に収束するためには閉集合であることが要求される。

集積点は1つとは限らない。極端な例が、区間[0,1]の全ての有理数に番号 を振った数列である。この場合、区間[0,1]のあらゆる点が集積点となる。(c) は区間分割を続けることで得られる。区間を半分に割るとどちらか(あるいは 両方)に無限点列が存在する。分割を続け区間を縮小することによって(c)を 得る。

関数 f(x) が定義域の中に最小点を持つことと、レベル集合が有界であることを関係づけるのは簡単には済まない。Lagarias は「最小点」を持つと言う代わりに、有界なレベル集合を条件として挙げる。有界な閉集合で定義された連続関数の値は有界で、定義域の中に最大点と最小点をとる²⁹。従って、目的関数の連続性が保証され、レベル集合が有界であれば、任意の μ について $L(f,\mu)$ の中に f(x)の最小点が存在することになる。ここでも深入りを避けるために、目的関数に対して、厳密な準凸関数の連続性とレベル集合の有界性を要請することにする。

補題 10. 目的関数 f(x) ($x \in \mathbb{R}^n$) を、全てのレベル集合が有界で、連続かつ厳密 な準凸関数として、NM 法で生成される *n* 次元の単体の列を Δ_k (k = 0, 1, 2, ...) とすると、その中に全ての頂点が収束するような部分列 $\Delta_{k_1}, \Delta_{k_2}, ...$ が存在す る ³⁰。

証明: Δ_k の頂点を $f(\boldsymbol{x})$ の大きさによって順位を付けて、それを小さい方から $\boldsymbol{x}_1^{(k)}, \boldsymbol{x}_2^{(k)}, ..., \boldsymbol{x}_{n+1}^{(k)}$ とする。 $\mu := f(\boldsymbol{x}_{n+1}^{(0)})$ とすると単体列はレベル集合 $L(f, \mu)$ の中に存在する。なぜなら $f(\boldsymbol{x}_{n+1}^{(k)})$ は k について非増加だからである (補題 4)。

従って点列

$$\boldsymbol{x}_{1}^{(0)}, \boldsymbol{x}_{1}^{(1)}, \boldsymbol{x}_{1}^{(2)}, ...$$

はコンパクト集合 $L(f,\mu)$ の中の無限点列である。以下の記述を簡明にするために、数列 $s_1 = (0,1,2,...)$ を使って、この点列を $x_1^{(k)}$ $(k \in s_1)$ のように表現 しよう。コンパクト集合のよく知られた定理によると、点列 $x_1^{(k)}$ $(k \in s_1)$ の 中に収束する部分点列 $x_1^{(k)}$ $(k \in s_1')$ が存在する。ここに s_1' は s_1 の部分数列

²⁹高木 [1] p.27、布川 [11] p.124、Rudin[4] p.89, p.40

 $^{^{30}}$ Rudin[4] p.51 には、「 \mathbb{R}^m の有界な無限数列には収束する部分列が存在する」とする定理が紹介されている。n 次元の単体は $\mathbb{R}^{n(n+1)}$ の空間にある点であると考えればよい

である。 $x_2^{(k)}$ ($k \in s_1'$) は収束しているとは限らない。 $x_2^{(k)}$ ($k \in s_1'$) はコンパク ト集合 $L(f,\mu)$ の中の無限点列ゆえ、その中に収束する部分点列 $x_2^{(k)}$ ($k \in s_2$) が存在する。この操作を続けると、補題の主張が得られる。

補注 1: $\Delta^* := \lim_{i \to \infty} \Delta_{k_i}$ としたとき、 Δ^* は縮退している可能性を排除し ない。極端には △* は1 点でもよい。

補注 2: この補題の証明法から解るとおり、補題の証明のためには 全て のレ ベル集合が有界である必要はない。

補題 11. \bar{x} , \bar{F} をここでは $x_{\rm m}$, $F_{\rm m}$ と表す。また

 $H = \{\mathrm{m, r, e, oc, ic}\}, \quad \boldsymbol{x}_h^{(k)} = \sum_{i=1}^{n+1} \lambda_{h,i} \boldsymbol{x}_i^{(k)}$

とする。0,1,2,...の部分列 sによって、単体列 Δ_k (k = 0,1,2,...)の部分列 $\Delta_k \ (k \in s)$ が収束するとせよ。すると、 $\forall h \in H$ に対して点列 $\boldsymbol{x}_h^{(k)} \ (k \in s)$ も 収束する。

また $f(\mathbf{x})$ が連続関数であれば、任意に与えられた微小な ε (> 0) に対して $k \in s$ and $k > K \implies \forall h \in H : |f(\boldsymbol{x}_h^{(k)}) - f(\boldsymbol{x}_h^*)| < \varepsilon$ となる K が存在する。

証明: Δ_k ($k \in s$) が Δ^* に収束するとせよ。 Δ^* の頂点を \mathbf{x}_i^* ($i \in I$) とすると、 補題の仮定により、δ (> 0) を与えて

 $k \in s \text{ and } k > K_1 \implies \forall i \in I : |\mathbf{x}_i^{(k)} - \mathbf{x}_i^*| < \delta$ となる K₁ が存在する。従って、この下で

$$|\bm{x}_{h}^{(k)} - \bm{x}_{h}^{*}| = |\sum_{i \in I} \lambda_{h,i} (\bm{x}_{i}^{(k)} - \bm{x}_{i}^{*})| \leq \sum_{i \in I} |\lambda_{h,i}| \cdot |\bm{x}_{i}^{(k)} - \bm{x}_{i}^{*}| < \delta L_{h}$$

である。ここに $L_h = \sum_{i \in I} |\lambda_{h,i}|$ とした。ここで $L = \max\{L_h; h \in H\}$ とす れば $|\boldsymbol{x}_{h}^{(k)} - \boldsymbol{x}_{h}^{*}| < \delta L$ となり、 $\delta = \varepsilon/L$ と採れば補題の前半の主張を得る。

後半は、f(x)の連続性によって

 $k \in s$ and $k > K_2 \implies \forall h \in H : |f(\boldsymbol{x}_{h}^{(k)}) - f(\boldsymbol{x}_{h}^{*})| < \varepsilon$ となる K_2 が存在する。そこで $K = \max\{K_1, K_2\}$ にとればよい。

補注 1: 補題から直ちに:

$$\begin{split} f(\boldsymbol{x}_{i}^{*}) > f(\boldsymbol{x}_{j}^{*}) \quad (i, j \in I \cup H) \\ \implies \quad \exists K \forall k : k \in s \quad \text{and} \quad k \geq K \quad \text{and} \quad f(\boldsymbol{x}_{i}^{(k)}) > f(\boldsymbol{x}_{j}^{(k)}) \\ & を得る。特に i \in I であれば \end{split}$$

 $f(\boldsymbol{x}_i^*) > f(\boldsymbol{x}_i^*) \quad (j \in I \cup H)$

 $\implies \exists K \forall k : k \in s \text{ and } k \geq K \text{ and } f(\boldsymbol{x}_i^{(k)}) \geq f(\boldsymbol{x}_i^*) > f(\boldsymbol{x}_j^{(k)})$ $\forall \mathfrak{F} \mathfrak{F}_{\circ}$

補注 2: 特に I = {1,2,3} で (標準パラメータの場合)

\boldsymbol{x}	$\lambda_1,\lambda_2,\lambda_3$	L_h
$ar{x}$	1/2, 1/2, 0	1
$x_{ m ic}$	1/4, 1/4, 1/2	1
$x_{ m oc}$	3/4, 3/4, -1/2	2
$m{x}_{ m r}$	1, 1, -1	3
$x_{ m e}$	3/2, 3/2, -2	5

である。 $\sum_i \lambda_i = 1$ に注意。この性質はアフィン集合の定義から来る。

5.3 Nelder-Mead 法の収束に関する 2 つの定理

単体 △ の縮退に関して、次の3つは同じことを述べている。

- △の頂点 x₁, x₂,..., x_{n+1} は全て同じ
- △は1点に縮退している
- diam $\Delta = 0$

補題 12. x_{n+1}, \bar{x}, x_r を NM 法で定義された n 次元の単体 Δ に対する点とする と、 $\alpha > 0, 0 < \gamma < 1, 0 < \alpha \gamma < 1$ の下で

(a) $x_{\mathrm{r}} = x_{n+1} \iff ar{x} = x_{n+1}$

(b) diam $\Delta \neq 0 \implies \bar{\boldsymbol{x}} \neq \boldsymbol{x}_{n+1}, \quad \boldsymbol{x}_{oc} \in (\boldsymbol{x}_{r}, \boldsymbol{x}_{n+1}), \quad \boldsymbol{x}_{ic} \in (\bar{\boldsymbol{x}}, \boldsymbol{x}_{n+1})$

証明: $\mathbf{x}_{r} = \bar{\mathbf{x}} + \alpha(\bar{\mathbf{x}} - \mathbf{x}_{n+1})$ ゆえ $\mathbf{x}_{r} - \mathbf{x}_{n+1} = (1 + \alpha)(\bar{\mathbf{x}} - \mathbf{x}_{n+1})$ である。 $\alpha > 0$ ゆえ、(a) を得る。(b) の $\bar{\mathbf{x}} \neq \mathbf{x}_{n+1}$ は、次のように得る。 $f(\mathbf{x})$ は厳密 な準凸関数であること、 $\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n+1}$ の全てが同じではないこと、および $f(\boldsymbol{x}_i) \leq f(\boldsymbol{x}_{n+1}) \ (i \in I)$ であることから

- $x_1, x_2, ..., x_n$ の全てが同じ場合: $\bar{x} = x_n \neq x_{n+1}$ である。
- x₁, x₂,..., x_nの全てが同じではない場合:

 $f(\bar{x}) < \max\{f(x_1), f(x_2), ..., f(x_n)\} = f(x_n)$

である (定理 3)。そして $f(x_n) \leq f(x_{n+1})$ ゆえ $\bar{x} \neq x_{n+1}$ である。(b) の $x_{oc} \in (x_r, x_{n+1})$ および $x_{ic} \in (\bar{x}, x_{n+1})$ は問題 2 と、 (\bar{x}, x_r) が (x_r, x_{n+1}) に 含まれていることから得る。

定義 6. 単体の体積

 \mathbf{R}^{n} における単体 Δ の体積の定義と計算法については、ここでは深入りしないで、次のことを認めることにする: 底面を共有する単体の体積は高さに比例する。 $\Delta := \operatorname{conv} \{ \mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n+1} \}$ の場合、底面とは $\operatorname{conv} \{ \mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n} \}$ である。底面を B とすると高さとは \mathbf{x}_{n+1} から aff B に下ろした垂線の長さである。単体 Δ の体積を vol Δ で表す。

Nelder-Mead 法の k サイクルで得られる単体 Δ_k の体積 vol Δ_k の変化に 着目しよう。拡張が発生すれば体積は増加する。反射だと体積は変化しない。 Outside Contraction あるいは Inside Contraction だと体積は減少する。後で見る ように、反射は非常に厄介である。反射が無限に継続して繰り返せば体積は 0 には収束しないので、単体の直径も 0 には収束しない。そこで反射は無限に継 続して繰り返さないとしよう。すると NM 法の単体列 Δ_k (k = 0, 1, 2, ...) から 反射を除去した単体列 Δ_k ($k \in s_0$) は無限列である。我々はレベル集合のコン パクト性を要請しているので、単体列 Δ_k ($k \in s_0$) の部分列で収束するものが 存在する ³¹。

定理 9. f(x) が有界なレベル集合を持つ連続かつ厳密な準凸関数であれば、 Nelder-Mead 法の反射が無限に継続して繰り返さない限り、 $\alpha > 0, 0 < \gamma < 1, 0 < \alpha\gamma < 1$ の下で

$$F_1^* = F_2^* = \dots = F_n^* = F_{n+1}^* \tag{29}$$

となる。

³¹反射を除去した単体列だけに着目するアイデアは Gao による

証明:仮に

$$F_i^* < F_{i+1}^* = F_{i+2}^* = \dots = F_n^* = F_{n+1}^*$$
(30)

として矛盾を示す。 $F_n^* = F_{n+1}^*$ は既に補題7で証明済みゆえ、式 (30) においてi = 1, 2, ..., n-1とする。

(0,1,2,...)の部分数列 s_0 からは反射が除去されているとする。条件式 (30)の下で

 $k \in s_0$ and $k \ge K$

 $\implies F_i^{(k)} < F_{i+1}^* \le F_{i+1}^{(k)} \le F_{i+2}^{(k)} \le \cdots \le F_n^{(k)} \le F_{n+1}^{(k)}$ (31)

となる *K* が存在する。数列 s_0 の部分数列 *s* の下で、単体列 Δ_k ($k \in s$) は或 る Δ^* に収束するとする。条件式 (30) によって、 Δ^* は 1 点には縮退していな い。従って $\mathbf{x}_r^* \neq \mathbf{x}_{n+1}^*$ および $\bar{\mathbf{x}}^* \neq \mathbf{x}_{n+1}^*$ である (補題 12)。

Nelder-Mead 法の STEP ごとに場合分けする。STEP 3 は反射ゆえ考えなくてもよい。

STEP 2: $F_r^{(k)} < F_1^{(k)}$: この場合 $F_1^{(k)}$ が更新され、その結果、補題 4 の式 (24) によって $F_{i+1}^{(k+1)} = F_i^{(k)}$ となるが、式 (31) によって $F_i^{(k)} < F_{i+1}^*$ であるから $F_{i+1}^{(k+1)} < F_{i+1}^*$ となり、式 (20) に矛盾する。

STEP 4: $F_n^{(k)} \leq F_r^{(k)} < F_{n+1}^{(k)}$: $x_r^* \neq x_{n+1}^*$ であるから、 $x_{oc}^* \in (x_r^*, x_{n+1}^*)$ ゆえ、

$$F_{\rm oc}^* < \max\{F_{\rm r}^*, F_{n+1}^*\}$$

であるが、 $F_{
m r}^* \leq F_{n+1}^*$ ゆえ $F_{
m oc}^* < F_{n+1}^*$ である。このことと、式 (31) より

 $k \in s$ and $k \ge K' \implies F_{oc}^{(k)} < F_{i+1}^*$ and $F_i^{(k)} < F_{i+1}^*$ となる $K' (\ge K)$ が存在する。従って補題 4 により、 $F_{i+1}^{(k+1)}$ は $F_{oc}^{(k)}$ あるいは $F_i^{(k)}$ となり、何れにせよ $F_{i+1}^{(k+1)} < F_{i+1}^*$ となり、式 (20) に矛盾する。 STEP 5: $F_{n+1}^{(k)} \le F_r^{(k)}$: $\bar{x}^* \neq x_{n+1}^*$ であるから $x_{ic}^* \in (\bar{x}^*, x_{n+1}^*)$ である。こ の後は STEP 4 と同様な議論を進めて

 $k \in s$ and $k \ge K' \implies F_{ic}^{(k)} < F_{i+1}^*$ and $F_i^{(k)} < F_{i+1}^*$ となる $K' (\ge K)$ の存在から $F_{i+1}^{(k+1)} < F_{i+1}^*$ となり、式 (20) に矛盾することになる。

従って条件式 (30) は成立し得ない。

定理 10. f(x) が有界なレベル集合を持つ連続かつ厳密な準凸関数であれば、 Nelder-Mead 法の反射が無限に継続して繰り返さない限り、 $\alpha > 0, 0 < \gamma < 1, 0 < \alpha\gamma < 1$ の下で

 $F_1^* = F_2^* = \dots = F_n^* = F_{n+1}^* \implies \lim_{k \to \infty} \operatorname{diam} \Delta_k = 0$ (32) $\succeq \not \simeq \vartheta_\circ$

証明:仮に $\lim_{k\to\infty} \operatorname{diam} \Delta_k \neq 0$ として矛盾を示す。この場合には任意に与え られた微小な ε (> 0) に対して $\operatorname{diam} \Delta_k \geq \varepsilon$ となる k が無限個存在すること になる ³²。

(0,1,2,...)の部分数列 s_0 からは反射が除去されているとする。f(x)のレベル集合はコンパクトであるとしているので、単体列 Δ_k $(k \in s_0)$ の中から条件 diam $\Delta_k \ge \varepsilon$ を満たす部分列 Δ_k $(k \in s)$ を取り出し、さらにその中から、或る単体 Δ^* に収束する部分列 Δ_k $(k \in s')$ を取り出すことができる。

そこで、 △* が相異なる 2 点を含むことと、条件

$$F_1^* = F_2^* = \dots = F_n^* = F_{n+1}^*$$

は両立しないことを示す。補題 12 により、 Δ^* が相異なる 2 点を含むと $x_r^* \neq x_{n+1}^*$ および $\bar{x}^* \neq x_{n+1}^*$ であることに注意しておく。

Nelder-Mead 法の STEP ごとに場合分けする。STEP 3 は反射ゆえ考えなくてもよい。

STEP 2:
$$F_{
m r}^{(k)} < F_{
m 1}^{(k)}$$
: $x_{
m r}^* \neq x_{n+1}^*$ であるから、 $x_{
m r}^* \in (x_{
m e}^*, x_{n+1}^*)$ ゆえ、 $F_{
m r}^* < \max\{F_{
m e}^*, F_{n+1}^*\}$

である。また $F_1^{(k+1)} = \min\{F_r^{(k)}, F_e^{(k)}\}$ であり、STEP 2 における拡張は $F_e^{(k)} < F_r^{(k)}$ の場合に発生する。この場合は

$$F_{\rm e}^{(k)} < F_{\rm r}^{(k)} < F_1^{(k)} \le F_{n+1}^{(k)}$$

従って $F_{
m e}^* \leq F_{n+1}^*$ である。ゆえに $F_{
m r}^* < F_{n+1}^*$ 従って

 $k \in s'$ and $k \ge K \implies F_{\rm r}^{(k)} < F_{n+1}^* = F_1^*$ となる K が存在する。k のこの領域で $F_1^{(k+1)} = F_{\rm e}^{(k)}$ になることは $F_1^{(k+1)} = F_{\rm e}^{(k)} < F_{\rm r}^{(k)} < F_1^*$

³²この証明のアイデアは Lagarias による

を意味し、式 (20) に矛盾する。

STEP 4: $F_n^{(k)} \leq F_r^{(k)} < F_{n+1}^{(k)}$: $x_r^* \neq x_{n+1}^*$ であるから、 $x_{oc}^* \in (x_r^*, x_{n+1}^*)$ ゆえ、

$$F_{\rm oc}^* < \max\{F_{\rm r}^*, F_{n+1}^*\}$$

であるが、 $F_{\mathbf{r}}^* \leq F_{n+1}^*$ ゆえ $F_{\mathbf{oc}}^* < F_{n+1}^*$ である。ゆえに

 $k \in s'$ and $k \ge K \implies F_{\rm oc}^{(k)} < F_{n+1}^* = F_1^*$ となる K が存在する。この下で $F_1^{(k)}$ が更新され $F_1^{(k+1)} = F_{\rm oc}^{(k)} < F_1^*$ となり 式 (20) に矛盾する。

STEP 5: $F_{n+1}^{(k)} \leq F_{r}^{(k)}$: $\bar{x}^{*} \neq x_{n+1}^{*}$ であるから、 $x_{ic}^{*} \in (\bar{x}^{*}, x_{n+1}^{*})$ ゆえ、 $F_{ic}^{*} < \max\{\bar{F}^{*}, F_{n+1}^{*}\}$

であるが、 $ar{F}^* \leq F^*_{n+1}$ ゆえ $F^*_{
m ic} < F^*_{n+1}$ である。ゆえに

 $k \in s'$ and $k \ge K \implies F_{ic}^{(k)} < F_{n+1}^* = F_1^*$ となる K が存在する。この下で $F_1^{(k)}$ が更新され $F_1^{(k+1)} = F_{ic}^{(k)} < F_1^*$ となり 式 (20) に矛盾する。

従って Δ^* が相異なる 2 点を含むことはない。すなわち diam $\Delta^* = 0$ であ る。このことは diam Δ_k ($k \in s$) が 0 に収束する部分列を持つことを意味し、 diam $\Delta_k \ge \varepsilon > 0$ ($k \in s$) と矛盾する。

注意: この定理は Δ_k が収束することは主張していない。

さて、ここでこれまでの結果をちょっと違った観点から見てみよう。定理9 および定理 10 の証明を見れば解るように、k が或る値を超えると拡張は発生 しない。従ってその領域では単体の体積はkについて非増加である。この領域 で体積はkについてどのように変化するのか? 簡単のために $k \ge 0$ で拡張は発 生しないとする。また反射で体積の変化がなく、Contraction で体積が半分にな るとする。k = 0 での単体の体積を1として、例えば次のように変化する:

この例では k = 1, 2, 4, 7, 8 で反射が発生し、k = 3, 5, 6 では Outside Contraction あるいは Inside Contraction が発生している。

反射が無限に継続して繰り返せば、直径は0に収束しないことは自明である が、定理9と定理10によると、

- *f*(*x*) は有界なレベル集合を持つ連続かつ厳密な準凸関数
- 反射が継続して無限には繰り返さない

の条件の下で(体積はもちろん0に収束するが)直径も0に収束する。

定理9と定理10によって、Nelder-Mead 法の単体列の直径が0に収束する 問題に対するLagariasとGaoに続く第三の解答が示されたことになる。アプ ローチの仕方、従って証明法も主張の強さも三者三様である。

6 反射の問題

この節では、前節でやり残した問題、すなわち、無限に継続して繰り返される 反射の問題を扱う。特に定理9および定理10の仕上げを目標としている。記 号は全て前節から継続される。パラメータに関してはα=1を仮定する。

6.1 2次元の場合

次に見るように2次元の問題の解決は易しい。

補題 13. 2 次元の NM 法の単体列 Δ_k では、無限に継続して繰り返される反射 は発生しない。

証明:仮に $k \ge K$ で反射 $\boldsymbol{x}_{r}^{(k)} = \boldsymbol{x}_{1}^{(k)} + \boldsymbol{x}_{2}^{(k)} - \boldsymbol{x}_{3}^{(k)}$ が無限に繰り返されるとしよう。その場合、 $F_{r}^{(k)} < F_{1}^{(k)}$ であれば $F_{1}^{(k)}$ が更新され

$$\boldsymbol{x}_{1}^{(k+1)} = \boldsymbol{x}_{r}^{(k)}, \quad \boldsymbol{x}_{2}^{(k+1)} = \boldsymbol{x}_{1}^{(k)}, \quad \boldsymbol{x}_{3}^{(k+1)} = \boldsymbol{x}_{2}^{(k)}$$
 (33)

となる。他方 $F_1^{(k)} \leq F_{
m r}^{(k)} < F_2^{(k)}$ であれば $F_2^{(k)}$ が更新され

 $\boldsymbol{x}_{1}^{(k+1)} = \boldsymbol{x}_{1}^{(k)}, \quad \boldsymbol{x}_{2}^{(k+1)} = \boldsymbol{x}_{r}^{(k)}, \quad \boldsymbol{x}_{3}^{(k+1)} = \boldsymbol{x}_{2}^{(k)}$ (34)

となる。これらは各々 STEP 2 と STEP 3 で発生する。

式 (33) の場合の単体の変化の様子を図 9 に示す。式 (34) の場合には図 10 の ようになる。この 2 つのパターンが図 9、図 10 に示されるような純粋な形で現 れるとは限らず、交互に入れ混じる可能性があるので厄介である。しかし生成 される単体列のバターンの詳細に立ち入ることなく、無限に継続して繰り返さ れる反射は発生しないことは、2次元の場合には容易に示すことが可能である。

$$\mathbf{x}_{r}^{(k+1)} = \mathbf{x}_{1}^{(k+2)} = \mathbf{x}_{2}^{(k+3)} = \mathbf{x}_{3}^{(k+4)} \qquad \mathbf{x}_{r}^{(k+2)} = \mathbf{x}_{1}^{(k+3)} = \mathbf{x}_{2}^{(k+4)}$$
$$\mathbf{x}_{1}^{(k)} = \mathbf{x}_{2}^{(k+1)} = \mathbf{x}_{3}^{(k+2)} \qquad \mathbf{x}_{r}^{(k)} = \mathbf{x}_{1}^{(k+1)} = \mathbf{x}_{2}^{(k+2)} = \mathbf{x}_{3}^{(k+3)}$$
$$\mathbf{x}_{3}^{(k)} \qquad \mathbf{x}_{2}^{(k)} = \mathbf{x}_{3}^{(k+1)}$$

図 9:2 次元における反射の繰り返し例

図 10:2 次元における反射の繰り返し例

 $k \ge K$ では、 $\Delta_k \ge \Delta_{k+1}$ は合同図形であり、1 つの辺を共有している。そ こで Δ_K を基に、次の規則 (a) と (b) で再帰的に生成される集合 *S* を考える:

(a) $\Delta_K \in S$

(b) $\Delta \in S$ の任意の 1 つの辺を折り返して生成される単体も *S* に含まれる すると *S* は平面を重なり合わずに隙間なく埋め尽くし、NM 法で生成される単 体 Δ_k はどれも *S* に含まれる。他方では、レベル集合は有界であるとしてい るので、レベル集合に含まれる *S* の要素は有限個しか存在しない。さらに NM 法で生成される単体列はレベル集合から抜け出すことができない (補題 10 の証 明を見よ)。従って $\Delta_k = \Delta_{k'}$ となる *k* と *k'* が存在することになる。しかし、 そうであれば、単体列は巡回することになり、補題 3 に反する。従って無限に 継続して繰り返される反射は発生しない。

6.2 3次元の場合

定理 9 と定理 10 を、反射に関する条件なしに証明するには、3 次元の場合に は $F_2^* < F_3^* = F_4^*$ および $F_1^* < F_2^* = F_3^* = F_4^*$ さらに $F_1^* = F_2^* = F_3^* = F_4^*$ の全てについて、無限に継続して繰り返される反射が不可能であることを示す 必要がある。しかし、これら全てのケースを論じることは極めて困難である。 ここでは、最も簡単な $F_2^* < F_3^* = F_4^*$ の場合に限定して、解決の際に発生する 問題を調べる。

補題 14.3 次元の問題では

$$F_2^* < F_3^* = F_4^*$$

の条件の下で、無限に継続して繰り返される反射による最悪点の列は楕円の上 に分布する。

証明: 3 次元の場合には、補題の条件を充しながら、無限に継続して繰り返さ れる反射が発生するとすれば、 $k \ge K$ に対して

$$egin{aligned} &m{x}_{ ext{r}}^{(k)} = rac{2}{3}(m{x}_{1}^{(k)} + m{x}_{2}^{(k)} + m{x}_{3}^{(k)}) - m{x}_{4}^{(k)}, \ &m{x}_{1}^{(k+1)} = m{x}_{1}^{(k)}, \quad m{x}_{2}^{(k+1)} = m{x}_{2}^{(k)}, \quad m{x}_{3}^{(k+1)} = m{x}_{1}^{(k)}, \quad m{x}_{4}^{(k+1)} = m{x}_{3}^{(k)}, \end{aligned}$$

となる K が存在することになる。煩雑さを避けるために、以下では k = 0 から始める。すなわち K を超えた最初の k を k の起点とする。補題の条件の下では、 $\mathbf{x}_1^{(k)}$ と $\mathbf{x}_2^{(k)}$ は更新されないが、 $\mathbf{x}_3^{(k)}$ は反射によって更新される。この様子を図 11 に示す。

この図は 3 次元の図形を平面に射影した図である。すなわち、点 x = (x, y, z)は (x, y) として描かれている。平面に垂直に z-軸がある。 $x_{1,2}$ と書いたのは $x_1^{(k)}$ と $x_2^{(k)}$ である。これらの点は順位の更新は発生しない。従って

 $\pmb{x}_1^{(k)} = \pmb{x}_1^{(0)}, \; \pmb{x}_2^{(k)} = \pmb{x}_2^{(0)} \quad (k=0,1,2,\ldots)$

である。そのために、これらの点は z-軸の上に設定されている。 x_4 と書いたのは $x_4^{(k)}$ の意味で、 x_4' は $x_4^{(k+1)}$ 、また x_4'' は $x_4^{(k+2)}$ の意味である。肩付きの(k), (k+1), (k+2)は全て省略され、代わりに""で代用されている。そして

$$ar{m{x}} = rac{1}{3}(m{x}_1 + m{x}_2 + m{x}_3)$$

は、射影面では $x_3/3$ である。

— 46 —

図 11: x_4 , x_3 , x_r の関係 $x_4 = (-5, -6)$, $x_3 = (3, -6)$ としている

$$\boldsymbol{x}^{(k)} := \boldsymbol{x}_{4}^{(k)} - \boldsymbol{x}_{1}^{(0)} \& \mathbb{E} \& \& \& \& \\ \boldsymbol{x}^{(0)} = \boldsymbol{x}_{4}^{(0)} - \boldsymbol{x}_{1}^{(0)}, \quad \boldsymbol{x}^{(1)} = \boldsymbol{x}_{4}^{(1)} - \boldsymbol{x}_{1}^{(0)} = \boldsymbol{x}_{3}^{(0)} - \boldsymbol{x}_{1}^{(0)}$$
(35)
$$\frac{1}{2} (\boldsymbol{x}^{(k+2)} + \boldsymbol{x}^{(k)}) = \frac{1}{3} \boldsymbol{x}^{(k+1)} \therefore \boldsymbol{x}^{(k+2)} = \frac{2}{3} \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}$$
(36)

$$\mu^2 = \frac{2}{3}\mu - 1$$

の解の1つ

$$\mu = \frac{1}{3}(1 + 2\sqrt{-2}), \quad |\mu| = 1$$

とすると

$$\boldsymbol{x}^{(k)} = \frac{1}{\mu - \bar{\mu}} ((\boldsymbol{x}^{(1)} - \bar{\mu}\boldsymbol{x}^{(0)})\mu^{k} - (\boldsymbol{x}^{(1)} - \mu\boldsymbol{x}^{(0)})\bar{\mu}^{k})$$

$$= \frac{1}{\mu - \bar{\mu}} (\boldsymbol{x}^{(1)}(\mu^{k} - \bar{\mu}^{k}) - \boldsymbol{x}^{(0)}(\mu^{k-1} - \bar{\mu}^{k-1}))$$

$$= \frac{\sin k\theta}{\sin \theta} \boldsymbol{x}^{(1)} - \frac{\sin(k-1)\theta}{\sin \theta} \boldsymbol{x}^{(0)}$$
(37)

を得る。ここにθは

$$\sin \theta = (\mu - \bar{\mu})/(2\sqrt{-1}) = \frac{2\sqrt{2}}{3}, \quad 0 < \theta < \pi/2$$

で定義する。この場合 $\cos \theta = 1/3$ である。

次に最悪点 $x_4^{(k)}$ の軌跡の散布図を示す (図 12)。図では k = 99 までの分布

が示されている。散布図からも推測できるが、 $x_4^{(k)}$ は $x_1^{(0)}$ を中心とする楕円 の上に分布している。実際 $x^{(k)} = (x_k, y_k)$ と置いて、式(37)から sin $k\theta$ を消 去すると

$$(x_k y_1 - y_k x_1 + (y_k x_0 - x_k y_0) \cos \theta)^2 + ((y_0 x_k - x_0 y_k) \sin \theta)^2 = (x_0 (y_1 - y_0 \cos \theta) - y_0 (x_1 - x_0 \cos \theta))^2$$
(38)

が得られる。これは (x_k, y_k) に関して楕円の式である。楕円の形は初期値 $(x_0, y_0), (x_1, y_1)$ で決まる。このことは、また式(37)からも明らかである。 \Box

 $\mathbf{x}^{(k)}$ は初期条件 $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}$ だけから決まり、目的関数 $f(\mathbf{x})$ とは無関係である。ところが $\mathbf{x}^{(k)}$ (k > 1) は任意の微小な ε (> 0) に対して

$$F_4^* \le f(\boldsymbol{x}_4^{(k)}) < f(\boldsymbol{x}_4^{(1)}) < F_4^* + \varepsilon$$
(39)

を満たしながら動かなくてはならない。この可能性は問題 13 で扱われている。 問題 11. 2×2 行列 *A* を

$$A := \begin{pmatrix} x_0 & x_1 \\ y_0 & y_1 \end{pmatrix} \begin{pmatrix} r & r\cos\theta \\ 0 & r\sin\theta \end{pmatrix}^{-1}$$
(40)

— 48 —

で定義すると

$$\boldsymbol{x}^{(k)} := A \begin{pmatrix} r \cos k\theta \\ r \sin k\theta \end{pmatrix}$$
(41)

は式(37)の解であることを示せ。

答:

$$\begin{pmatrix} r & r\cos\theta\\ 0 & r\sin\theta \end{pmatrix}^{-1} \begin{pmatrix} r\cos k\theta\\ r\sin k\theta \end{pmatrix} = \frac{1}{r\sin\theta} \begin{pmatrix} \sin\theta & -\cos\theta\\ 0 & 1 \end{pmatrix} \begin{pmatrix} r\cos k\theta\\ r\sin k\theta \end{pmatrix}$$
$$= \frac{1}{\sin\theta} \begin{pmatrix} \sin\theta\cos k\theta - \cos\theta\sin k\theta\\ \sin k\theta \end{pmatrix} = \frac{1}{\sin\theta} \begin{pmatrix} -\sin(k-1)\theta\\ \sin k\theta \end{pmatrix}$$
$$(7553) \quad (457) \quad (7553) \quad (451) \quad (7553) \quad$$

$$= \frac{1}{\sin \theta} \begin{pmatrix} -x_0 \sin(k-1)\theta + x_1 \sin k\theta \\ -y_0 \sin(k-1)\theta + y_1 \sin k\theta \end{pmatrix}$$
$$= \frac{\sin k\theta}{\sin \theta} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - \frac{\sin(k-1)\theta}{\sin \theta} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

となる。これは式 (37) に他ならない。

補注:式 (41) によると、楕円上の $x^{(k)}$ の分布は、半径 rの円上の点 $\begin{pmatrix} r\cos k\theta \\ r\sin k\theta \end{pmatrix}$ (k = 0, 1, 2, ...)

の分布のアフィン写像である。 $|A| \neq 0$ としてよいので、一方が稠密であれば、 他方も稠密である。また一方が有限集合であれば、他方も有限集合である。

問題 12. ω (> 0) を無理数とする。また [···] をガウスの整数化記号とする。 すると

$$S := \{k\omega - [k\omega] \; ; \; k = 1, 2, 3, \ldots\}$$

は区間[0,1)で稠密であることを示せ。

答: 連分数論の定理により、与えられた任意の δ (> 0) に対して $0 < q\omega - p < \frac{1}{p} < \delta$ (42)

となる自然数 $p \ge q$ が存在する ³³。 $d := q\omega - p$ とすると

$$T := \{kd \; ; \; k = 1, 2, 3, ..., [1/d]\}$$

の点は全て区間 [0,1) に納まる。d < 1/p であるから、小区間

$$I_k := [k/p, (k+1)/p)$$

には少なくとも1個のTの点が存在する。そして

$$k(q\omega - p) < 1$$
 $(k = 1, 2, 3, ..., [1/d])$

であるから $[k(q\omega - p)] = 0$ すなわち $[kq\omega] = kp$ である。従って $kq\omega - kp = kq\omega - [kq\omega]$ である。ゆえに任意の δ (> 0) に対して、S の部分集合

$$S' := \{ kq\omega - [kq\omega] \; ; \; k = 1, 2, 3, ..., [1/d] \}$$

が存在し、[0,1)の任意の点 x と、区間 $[x - \delta/2, x + \delta/2)$ の中に S'の要素を 含む。

補注 1: 連分数論によると

$$\frac{p}{q} < \omega < \frac{p'}{q'}$$
 and $\frac{p'}{q'} - \frac{p}{q} = \frac{1}{qq'}$

となる p/q, p'/q' が無数に存在する。しかも q > q'の組みも、q < q'の組みも どちらも存在する。このことから直ちに式 (42) を得る。

補注 2: ω が有理数であれば S は有限集合である。

 $m{x}_{4}^{(k)}$ (k = 0, 1, 2, ...) は NM 法の最悪点の列であるが、 $k \ge 2$ では反射点の列でもある。集合

$$R := \{ \boldsymbol{x}_4^{(k)} ; k = 0, 1, 2, \ldots \}$$

が有限集合であれば反射は無限には連続しない。問題 11、および問題 12 に よって、 θ/π が有理数であれば *R* は有限集合である。他方 θ/π が無理数であ れば ³⁴、*R* は楕円上を稠密に分布する。

³³高木 [2]の「\$20 実数の連分数展開」を見よ

 $^{^{34}}$ Gao[21] は θ/π は無理数であると断定しているが、証明は無いと思えるので、このような言い 方をしている

問題 13. 次の 4 つの条件を同時に満たすことは不可能であることを示せ。

- (a) $x_4^{(k)}$ (k = 0, 1, 2, ...) は楕円軌道の中に稠密に分布する
- (b) $F_4^* := \lim_{k \to \infty} f(\boldsymbol{x}_4^{(k)})$ が存在する
- (c) 曲線 $f(x) = F_4^*$ と (a) の楕円軌道は一致しない
- (d) *f*(*x*) は連続関数である

答: $x_4^{(k)}$ (k = 0, 1, 2, ...) が描く楕円軌道の方程式を g(x) = 0 とする。仮定 (c) により曲線 $f(x) = F_4^*$ は g(x) = 0 と一致しないので

$$g(\boldsymbol{x}^*) = 0$$
 and $f(\boldsymbol{x}^*) \neq F_4^*$

となる x^* が存在する。仮定 (a) により x^* に収束する $x_4^{(k)}$ の部分列 $x_4^{(k_0)}, x_4^{(k_1)}, x_4^{(k_2)}, ...$

が存在する。この部分列によって、(d)を仮定すれば

$$\lim_{j \to \infty} f(\boldsymbol{x}_4^{(k_j)}) = f(\boldsymbol{x}^*)$$

である。 $f(x^*) \neq F_4^*$ であるから、このことは仮定 (b) と矛盾する。 \Box 補注:条件 (c) は不要である。なぜなら、曲線 $f(x) = F_4^*$ と (a) の楕円軌道が 一致している場合には

$$f(\boldsymbol{x}_4^{(0)}) = f(\boldsymbol{x}_3^{(0)}) = f(\boldsymbol{x}_{\mathrm{r}}^{(0)}) = F_4^*$$

である。これは NM 法の STEP 5 (Inside Contraction) に相当し、反射が連続しない³⁵。従って (a) は成立しない。また (b) は満たされているのであるから、 実質的な条件は (a) と (d) である。

以上より θ/π が有理数であっても無理数であっても、f(x)が有界なレベル 集合を持つ連続かつ厳密な準凸関数であれば、 $F_2^* < F_3^* = F_4^*$ の条件下では、 無限に継続して繰り返される反射は不可能であることが示されたことになる。

7 結語

この論文(記事)では Nelder-Mead 法の数学的基礎を Lagarias の研究成果を出 発点にして論じた。Lagarias は目的関数として「レベル集合が有界で厳密な凸

³⁵曲線 $f(x) = F_4^*$ と (a) の楕円軌道の微妙なずれによって、連続する反射の回数を制御できると予想される。この問題は Gao[21] が扱っている

関数」を採用し、研究したが、ここでは条件を緩めて、目的関数として1変数 の場合には最小点が存在する「厳密な準凸関数」、多変数の場合には「レベル 集合が有界で連続かつ厳密な準凸関数」を採用し、同様な研究を進めた。

この論文によって Lagarias が得た結論は同様に得られることが示された。す なわち、目的関数が1変数の問題では Nelder-Mead 法で生成される単体列は最 小点に収束し、2変数問題では単体列の単体の直径が0に収束する。

多変数の問題に関しては Gao の研究がある。彼は Lagarias の目的関数の条件をさらに厳しくして、反射が無限に繰り返されなければ、単体の直径が0に 収束することを示した。この論文では Gao の研究とは逆に、目的関数の条件 を、「レベル集合が有界で連続かつ厳密な準凸関数」に緩めても Gao が得た結 論が得られることを示した。

2 変数および3 変数の目的関数による反射問題を個別に論じた。2 変数の問題 は容易に解決される。3 変数の問題は簡単ではない。ここでは $F_2^* < F_3^* = F_4^*$ の場合のみを論じ、この場合には反射が無限に繰り返さないことを示した。問 題の全体を解決するには、もっとうまい方法が求められる。

単体列の収束に関する議論が残されている。また最小点への収束問題の議論 も見送った。これらの問題は他の機会に回したい。

References

- [1] 高木貞治:『解析概論』(岩波書店, 1966)
- [2] 高木貞治:『初等整数論講義』(共立出版, 1995)
- [3] G.H.Hardy, E.M.Wright: "An Introduction to the Theory of Numbers" (Oxford Science Publication, 1979)
- [4] Walter Rudin: "Principles of Mathematical Analysis" (McGraw Hill, 1976)
- [5] 藤田宏、今野浩、田邊國士: 『最適化法』(岩波書店「応用数学講座」,1994)
- [6] R.Tyrrell Rockafellar: "Convex Analysis" (Princeton University Press, 1972)
- [7] Hiriart-Urruty, C.Lemaréchal: "Convex Analysis and Minimization Algorithms I" (Springer-Verlag, 1993)
- [8] S.Karamardian: "Strictly Quasi-Convex (Concave) Functions and Duality in Mathematical Programming"

(Journal of Mathematical Analysis and Applications, 1967)

https://www.sciencedirect.com/science/article/pii/0022247X67900959

[9] H.J.Greenberg and W.P.Pierskalla: "A Review of Quasi-Convex Functions" (Operations Reasearch, 1971)

https://www.researchgate.net/publication/238836399_A_Review_of_

Quasi-Convex_Functions

[10] Aris Daniilidis and Yboon G.Ramos: "Some Remarks on the Class of Continuous (Semi

 Strictly Quasiconvex Functions"
 (Journal of Optimization Theory and Applications, 2007)

http://www.crm.cat/en/Publications/Publications/2005/pr642.pdf

- [11] 布川昊, 中山弘隆, 谷野哲三:『線形代数と凸解析』(コロナ社, 1991)
- [12] 須賀晃一:『公共経済学講義:理論から政策へ』数学付録:凹関数と凸関数 (有斐閣, 2014)

http://yuhikaku-nibu.txt-nifty.com/blog/files/

ConcaveConvexFn140701_YuhikakuSugaPubecon.pdf

 [13] Dinh The Luc: "Generalized Convexity and Some Applications to Vector Optimization" (Vietnam Journal of Mathematics, 1998)

```
http://www.math.ac.vn/publications/vjm/vjm_26/No.2/95-110_Luc.pdf
```

- [14] Stephen Boyd and Lieven Vandenberghe: "Convex Optimization" (Cambridge University Press, 2004/2009) https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
- [15] A.Cambini and Laura Martein: "Generalized Convexity and Optimization" (Springer, 2009)
- [16] Fred James: "Function Minimization" (CERN Computing and Data Processing School, 1972) http://distfiles.gentoo.org/distfiles/mntutorial.pdf
- [17] J. A. Nelder and R. Mead: "A simplex method for function minimization" (Computer Journal, 1965)
- [18] J.C.Lagarias, J.A.Reeds, M.H.Wright and P.E.Wright: "Convergence Properties of the Nelder-Mead Simplex Method in low Dimensions" (SIAM J. OPTIM., 1998)
- [19] J.C.Lagarias, B.Poonen and M.H.Wright: "Convergence of the restricted Nelder-Mead algorithm in two dimensions" (SIAM J. Optim, 2012)
- [20] K.I.M. NcKinnon: "Convergence of the Nelder-Mead Simplex Method to a Non-Stationary Point" (SIAM J. OPTIM., 1998)
- [21] Fuchang Gao and Lixing Han: "Implementing the Nelder-Mead simplex algorithm with adaptive parameters"

(Computational Optimization and Applications, 2012)